Twitter Mining for Multiclass Classification Events of Traffic and Pollution

dc.contributor.authorChamorro, Verónica
dc.contributor.authorRivera, Richard
dc.contributor.authorVarela-Aldás, José
dc.contributor.authorCastillo-Salazar, David
dc.contributor.authorBorja-Galeas, Carlos
dc.contributor.authorGuevara-Maldonado, César
dc.contributor.authorArias-Flores, Hugo
dc.contributor.authorFierro-Saltos, Washington
dc.contributor.authorHidalgo-Guijarro, Jairo
dc.contributor.authorYandún-Velasteguí, Marco
dc.date.accessioned2022-06-29T23:14:20Z
dc.date.available2022-06-29T23:14:20Z
dc.date.issued2020
dc.description.abstractDuring the last decade social media have generated tons of data, that is the primal information resource for multiple applications. Analyzing this information let us to discover almost immediately unusual situations, such as traffic jumps, traffic accidents, state of the roads, etc. This research proposes an approach for classifying pollution and traffic tweets automatically. Taking advantage of the information in tweets, it evaluates several machine learning supervised algorithms for text classification, where it determines that the support vector machine (SVM) algorithm achieves the highest accuracy value of 85,8% classifying events of traffic and not traffic. Furthermore, to determine the events that correspond to traffic or pollution we perform a multiclass classification. Where we obtain an accuracy of 78.9%. © Springer Nature Switzerland AG 2020.es
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-030-27928-8_153
dc.identifier.urihttps://hdl.handle.net/20.500.14809/3422
dc.language.isoenges
dc.publisherAdvances in Intelligent Systems and Computing. Volume 1026, Pages 1030 - 1036. 2nd International Conference on Human Systems Engineering and Design: Future Trends and Applications, IHSED 2019. Munich. 16 September 2019 through 18 September 2019es
dc.rightsopenAccesses
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es
dc.titleTwitter Mining for Multiclass Classification Events of Traffic and Pollutiones
dc.typearticlees

Archivos