Twitter Mining for Multiclass Classification Events of Traffic and Pollution
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Editor
Advances in Intelligent Systems and Computing. Volume 1026, Pages 1030 - 1036. 2nd International Conference on Human Systems Engineering and Design: Future Trends and Applications, IHSED 2019. Munich. 16 September 2019 through 18 September 2019
Resumen
During the last decade social media have generated tons of data, that is the primal information resource for multiple applications. Analyzing this information let us to discover almost immediately unusual situations, such as traffic jumps, traffic accidents, state of the roads, etc. This research proposes an approach for classifying pollution and traffic tweets automatically. Taking advantage of the information in tweets, it evaluates several machine learning supervised algorithms for text classification, where it determines that the support vector machine (SVM) algorithm achieves the highest accuracy value of 85,8% classifying events of traffic and not traffic. Furthermore, to determine the events that correspond to traffic or pollution we perform a multiclass classification. Where we obtain an accuracy of 78.9%. © Springer Nature Switzerland AG 2020.
