Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uti.edu.ec//handle/123456789/3400
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Soria, Luis | - |
dc.contributor.author | Jiménez-Cadena, Gabriela | - |
dc.contributor.author | Martínez, Carlos | - |
dc.contributor.author | Castillo-Salazar, David | - |
dc.date.accessioned | 2022-06-29T15:24:00Z | - |
dc.date.available | 2022-06-29T15:24:00Z | - |
dc.date.issued | 2020 | - |
dc.identifier.uri | https://link.springer.com/chapter/10.1007/978-3-030-40690-5_22 | - |
dc.identifier.uri | http://repositorio.uti.edu.ec//handle/123456789/3400 | - |
dc.description.abstract | This work is a proposal to resolve the problem of identification plates of food through photographs. It involves using a large set of pictures which are processed by convolutional neural networks and parallel processing TensorFlow. The results show a 90% greater accuracy in training and between 63% and 80% in the test. The reason is that Ecuadorian dishes are very similar in the images of some recipes. © Springer Nature Switzerland AG 2020. | es |
dc.language.iso | eng | es |
dc.publisher | Advances in Intelligent Systems and Computing. Volume 1137 AISC, Pages 223 - 229. International Conference on Information Technology and Systems, ICITS 2020. Bogota. 5 February 2020 through 7 February 2020 | es |
dc.rights | openAccess | es |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | es |
dc.title | Classify ecuadorian receipes with convolutional neural networks | es |
dc.type | article | es |
Aparece en las colecciones: | Artículos Científicos Indexados |
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons