Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uti.edu.ec//handle/123456789/3400
Título : Classify ecuadorian receipes with convolutional neural networks
Autor : Soria, Luis
Jiménez-Cadena, Gabriela
Martínez, Carlos
Castillo-Salazar, David
Fecha de publicación : 2020
Editorial : Advances in Intelligent Systems and Computing. Volume 1137 AISC, Pages 223 - 229. International Conference on Information Technology and Systems, ICITS 2020. Bogota. 5 February 2020 through 7 February 2020
Resumen : This work is a proposal to resolve the problem of identification plates of food through photographs. It involves using a large set of pictures which are processed by convolutional neural networks and parallel processing TensorFlow. The results show a 90% greater accuracy in training and between 63% and 80% in the test. The reason is that Ecuadorian dishes are very similar in the images of some recipes. © Springer Nature Switzerland AG 2020.
URI : https://link.springer.com/chapter/10.1007/978-3-030-40690-5_22
http://repositorio.uti.edu.ec//handle/123456789/3400
Aparece en las colecciones: Artículos Científicos Indexados

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons