Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uti.edu.ec//handle/123456789/3522
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRybarczyk, Yves-
dc.contributor.authorZalakeviciute, Rasa-
dc.date.accessioned2022-07-02T17:01:57Z-
dc.date.available2022-07-02T17:01:57Z-
dc.date.issued2016-
dc.identifier.urihttps://ieeexplore.ieee.org/document/7750810-
dc.identifier.urihttp://repositorio.uti.edu.ec//handle/123456789/3522-
dc.description.abstractThis work addresses the question of how to predict fine particulate matter given a combination of weather conditions. A compilation of several years of meteorological data in the city of Quito, Ecuador, are used to build models using a machine learning approach. The study presents a decision tree algorithm that learns to classify the concentrations of fine aerosols, into two categories (>15μg/m3 vs. <15μg/m3), from a limited number of parameters such as the level of precipitation and the wind speed and direction. Requiring few rules, the resulting models are able to infer the concentration outcome with significant accuracy. This fundamental research intends to be a preliminary step in the development of a web-based platform and smartphone app to alert the inhabitants of Ecuador's capital about the risk to human health, with potential future application in other urban areas. © 2016 IEEE.es
dc.language.isoenges
dc.publisher2016 IEEE Ecuador Technical Chapters Meeting, ETCM 2016es
dc.rightsopenAccesses
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es
dc.titleMachine learning approach to forecasting urban pollutiones
dc.typearticlees
Aparece en las colecciones: Artículos Científicos Indexados

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons