Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uti.edu.ec//handle/123456789/3422
Título : | Twitter Mining for Multiclass Classification Events of Traffic and Pollution |
Autor : | Chamorro, Verónica Rivera, Richard Varela-Aldás, José Castillo-Salazar, David Borja-Galeas, Carlos Guevara-Maldonado, César Arias-Flores, Hugo Fierro-Saltos, Washington Hidalgo-Guijarro, Jairo Yandún-Velasteguí, Marco |
Fecha de publicación : | 2020 |
Editorial : | Advances in Intelligent Systems and Computing. Volume 1026, Pages 1030 - 1036. 2nd International Conference on Human Systems Engineering and Design: Future Trends and Applications, IHSED 2019. Munich. 16 September 2019 through 18 September 2019 |
Resumen : | During the last decade social media have generated tons of data, that is the primal information resource for multiple applications. Analyzing this information let us to discover almost immediately unusual situations, such as traffic jumps, traffic accidents, state of the roads, etc. This research proposes an approach for classifying pollution and traffic tweets automatically. Taking advantage of the information in tweets, it evaluates several machine learning supervised algorithms for text classification, where it determines that the support vector machine (SVM) algorithm achieves the highest accuracy value of 85,8% classifying events of traffic and not traffic. Furthermore, to determine the events that correspond to traffic or pollution we perform a multiclass classification. Where we obtain an accuracy of 78.9%. © Springer Nature Switzerland AG 2020. |
URI : | https://link.springer.com/chapter/10.1007/978-3-030-27928-8_153 http://repositorio.uti.edu.ec//handle/123456789/3422 |
Aparece en las colecciones: | Artículos Científicos Indexados |
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons