Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uti.edu.ec//handle/123456789/3422
Título : Twitter Mining for Multiclass Classification Events of Traffic and Pollution
Autor : Chamorro, Verónica
Rivera, Richard
Varela-Aldás, José
Castillo-Salazar, David
Borja-Galeas, Carlos
Guevara-Maldonado, César
Arias-Flores, Hugo
Fierro-Saltos, Washington
Hidalgo-Guijarro, Jairo
Yandún-Velasteguí, Marco
Fecha de publicación : 2020
Editorial : Advances in Intelligent Systems and Computing. Volume 1026, Pages 1030 - 1036. 2nd International Conference on Human Systems Engineering and Design: Future Trends and Applications, IHSED 2019. Munich. 16 September 2019 through 18 September 2019
Resumen : During the last decade social media have generated tons of data, that is the primal information resource for multiple applications. Analyzing this information let us to discover almost immediately unusual situations, such as traffic jumps, traffic accidents, state of the roads, etc. This research proposes an approach for classifying pollution and traffic tweets automatically. Taking advantage of the information in tweets, it evaluates several machine learning supervised algorithms for text classification, where it determines that the support vector machine (SVM) algorithm achieves the highest accuracy value of 85,8% classifying events of traffic and not traffic. Furthermore, to determine the events that correspond to traffic or pollution we perform a multiclass classification. Where we obtain an accuracy of 78.9%. © Springer Nature Switzerland AG 2020.
URI : https://link.springer.com/chapter/10.1007/978-3-030-27928-8_153
http://repositorio.uti.edu.ec//handle/123456789/3422
Aparece en las colecciones: Artículos Científicos Indexados

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons