Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uti.edu.ec//handle/123456789/7088
Título : Real-time hardware emulation of neural cultures: A comparative study of in vitro, in silico and in duris silico models
Autor : Vallejo-Mancero, Bernardo
Faci-Lázaro, Sergio
Zapata, Mireya
Soriano, Jordi
Madrenas, Jordi
Fecha de publicación : 2024
Editorial : Neural Networks. Open Access. Volume 179
Resumen : Biological neural networks are well known for their capacity to process information with extremely low power consumption. Fields such as Artificial Intelligence, with high computational costs, are seeking for alternatives inspired in biological systems. An inspiring alternative is to implement hardware architectures that replicate the behavior of biological neurons but with the flexibility in programming capabilities of an electronic device, all combined with a relatively low operational cost. To advance in this quest, here we analyze the capacity of the HEENS hardware architecture to operate in a similar manner as an in vitro neuronal network grown in the laboratory. For that, we considered data of spontaneous activity in living neuronal cultures of about 400 neurons and compared their collective dynamics and functional behavior with those obtained from direct numerical simulations (in silico) and hardware implementations (in duris silico). The results show that HEENS is capable to mimic both the in vitro and in silico systems with high efficient-cost ratio, and on different network topological designs. Our work shows that compact low-cost hardware implementations are feasible, opening new avenues for future, highly efficient neuromorphic devices and advanced human–machine interfacing.
URI : https://www.sciencedirect.com/science/article/pii/S0893608024005173
https://repositorio.uti.edu.ec//handle/123456789/7088
Aparece en las colecciones: Artículos Científicos Indexados

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons