Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uti.edu.ec//handle/123456789/6129
Título : Real-Time Adaptive Physical Sensor Processing with SNN Hardware
Autor : Madrenas, Jordi
Vallejo-Mancero, Bernardo
Oltra-Oltra, Josep
Zapata, Mireya
Cosp-Vilella, Jordi
Calatayud, Robert
Moriya, Satoshi
Sato, Shigeo
Fecha de publicación : 2023
Editorial : Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 14258 LNCS, Pages 423 - 434
Resumen : Spiking Neural Networks (SNNs) offer bioinspired computation based on local adaptation and plasticity as well as close biological compatibility. In this work, after reviewing the Hardware Emulator of Evolving Neural Systems (HEENS) architecture and its Computer-Aided Engineering (CAE) design flow, a spiking implementation of an adaptive physical sensor input scheme based on time-rate Band-Pass Filter (BPF) is proposed for real-time execution of large dynamic range sensory edge processing nodes. Simulation and experimental results of the SNN operating in real-time with an adaptive-range accelerometer input example are shown. This work opens the path to compute with SNNs multiple physical sensor information for perception applications.
URI : https://link.springer.com/chapter/10.1007/978-3-031-44192-9_34
https://repositorio.uti.edu.ec//handle/123456789/6129
Aparece en las colecciones: Artículos Científicos Indexados

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons