Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uti.edu.ec//handle/123456789/4857
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorYonbawi, Saud-
dc.contributor.authorAlahmari, Sultan-
dc.contributor.authorRao, Chukka Hari Govinda-
dc.contributor.authorIshak, Mohamad Khairi-
dc.contributor.authorAlkahtani, Hend Khalid-
dc.contributor.authorVarela-Aldás, José-
dc.contributor.authorMostafa, Samih-
dc.date.accessioned2023-03-26T03:18:04Z-
dc.date.available2023-03-26T03:18:04Z-
dc.date.issued2023-
dc.identifier.urihttps://techscience.com/csse/v46n2/51669/html-
dc.identifier.urihttps://repositorio.uti.edu.ec//handle/123456789/4857-
dc.description.abstractArtificial intelligence (AI) technologies and sensors have recently received significant interest in intellectual agriculture. Accelerating the application of AI technologies and agriculture sensors in intellectual agriculture is urgently required for the growth of modern agriculture and will help promote smart agriculture. Automatic irrigation scheduling systems were highly required in the agricultural field due to their capability to manage and save water deficit irrigation techniques. Automatic learning systems devise an alternative to conventional irrigation management through the automatic elaboration of predictions related to the learning of an agronomist. With this motivation, this study develops a modified black widow optimization with a deep belief network-based smart irrigation system (MBWODBN-SIS) for intelligent agriculture. The MBWODBN-SIS algorithm primarily enables the Internet of Things (IoT) based sensors to collect data forwarded to the cloud server for examination purposes. Besides, the MBWODBN-SIS technique applies the deep belief network (DBN) model for different types of irrigation classification: average, high needed, highly not needed, and not needed. The MBWO algorithm is used for the hyperparameter tuning process. A wide-ranging experiment was conducted, and the comparison study stated the enhanced outcomes of the MBWODBN-SIS approach to other DL models with maximum accuracy of 95.73%.es
dc.language.isoenges
dc.publisherComputer Systems Science and Engineering. Open Access.Volume 46, Issue 2, Pages 2319 - 2335es
dc.rightsopenAccesses
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es
dc.titleModeling of Sensor Enabled Irrigation Management for Intelligent Agriculture Using Hybrid Deep Belief Networkes
dc.typearticlees
Aparece en las colecciones: Artículos Científicos Indexados

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons