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RESUMEN EJECUTIVO 

 

La gestión del mantenimiento predictivo desempeña un papel crucial para 

garantizar el funcionamiento fiable de los equipos en la industria. Si bien la 

tecnología de monitoreo continuo está disponible en la actualidad, los equipos sin 

sensores limitan el registro continuo de datos del estado del equipo. El 

mantenimiento predictivo se ha llevado a cabo de forma eficaz utilizando 

algoritmos de inteligencia artificial para conjuntos de datos con datos 

suficientes. Sin embargo, replicar estos resultados con datos limitados es un 
desafío. Este trabajo propone el uso de modelos de series de tiempo para 

implementar mantenimiento predictivo en los equipos de una empresa 

ensambladora de automóviles con pocos registros disponibles. Para este propósito, 

se exploran tres modelos: el suavizado exponencial de Holt-Winters (HWES), el 

promedio móvil integrado autorregresivo (ARIMA) y el promedio móvil integrado 

autorregresivo estacional (SARIMA), para determinar el pronóstico más preciso del 

tiempo de inactividad futuro de los equipos y recomendar el uso. de SAP PM para 

una gestión eficaz del proceso de mantenimiento. Los datos se obtuvieron de cinco 

familias de equipos desde enero de 2020 hasta diciembre de 2022, representando 

36 registros para cada equipo. Después del ajuste de datos y la previsión, los 

resultados indican que el modelo SARIMA se adapta mejor a las características 

estacionales, y la previsión ofrece información valiosa para ayudar en la toma de 

decisiones para evitar el tiempo de inactividad de los equipos, a pesar de tener el 

mayor error. Los resultados fueron menos favorables cuando se manejaron 

conjuntos de datos con componentes aleatorios, lo que requirió la recalibración del 

modelo para realizar pronósticos a corto plazo. 

 

DESCRIPTORES: Mantenimiento predictivo, SAP PM, Suavizado Holt- 

Winters, ARIMA, SARIMA, Monitoreo de condición. 
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ABSTRACT 

LEVERAGING CLASSICAL STATISTICAL METHODS FOR 

SUSTAINABLE MAINTENANCE IN AUTOMOTIVE ASSEMBLY 

EQUIPMENT. 

 

 

Predictive maintenance management plays a crucial role in ensuring the reliable 

operation of equipment in the industry. While continuous monitoring technology is 

currently available, sensorless equipment limits the continuous recording of 

equipment condition data. Predictive maintenance has been effectively performed 

using artificial intelligence algorithms for data sets with sufficient data. However, 

replicating these results with limited data is challenging. This paper proposes the 

use of time series models to implement predictive maintenance on the equipment 

of an automotive assembly company with few available records. For this purpose, 

three models are explored: Holt-Winters exponential smoothing (HWES), 

autoregressive integrated moving average (ARIMA), and Holt-Winters exponential 

smoothing (HWES). and seasonal autoregressive integrated moving average 

(SARIMA), to determine the most accurate forecast of future equipment downtime 

and recommend the use of SAP PM for effective management of the maintenance 

process. Data was obtained from five equipment families from January 2020 to 

December 2022, representing 36 records for each piece of equipment. After data 

adjustment and forecasting, the results indicate that the SARIMA model is better 

suited to seasonal characteristics, and the forecast provides valuable information to 

aid in decision-making to avoid equipment downtime, despite having the largest 

error. Results were less favorable when handling data sets with random 

components, which required recalibration of the model for short-term forecasting. 
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Abstract: Predictive maintenance management plays a pivotal role in ensuring the reliability and 12 

efficient operation of automotive assembly equipment. Traditionally, managerial tools and sensing 13 

technology have been employed in the industry to enhance the maintenance process. However, 14 

despite improvements in equipment availability, the unpredictable downtime remains a significant 15 

challenge for maintenance managers. In this study, we propose an alternative approach to address  16 

this challenge and improve equipment availability in automotive assembly plants. We propose the 17 

utilization of classical statistical models to forecast future equipment downtime and advocate the  18 

use of SAP PM for effective maintenance process management. To achieve our objective, this 19 

research underscores the importance of collecting reliable maintenance historical data for each piece  20 

of equipment. We explore three time series models, Holt-Winters Exponential Smoothing (HWES), 21 

Autoregressive Integrated Moving Average (ARIMA), and Seasonal Autoregressive Integrated 22 

Moving Average (SARIMA), to identify the most accurate forecasting approach. The study yields 23 

alternative options for selecting the optimal time series model based on the specific behavior of the  24 

data. The SARIMA model best fits the data due to its stationary behavior, and this model shows 25 

effective results for time series with limited data, allowing us to anticipate random downtime in 26 

equipment. 27 
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Condition monitoring. 29 

30 

1. Introduction 31 

In recent years, predictive maintenance has emerged as a groundbreaking approach 32 

that has revolutionized how industries manage their assets and equipment. Traditional 33 

maintenance strategies, often characterized by fixed schedules or reactive responses, have 34 

proven to be costly, inefficient, and sometimes even detrimental to operations. The 35 

concept of predictive maintenance, on the other hand, harnesses the power of advanced 36 

technologies, data-driven insights, condition monitoring, and real-time monitoring to 37 

usher in a new era of efficiency, reliability, and sustainability [1–5]. Predictive 38 

maintenance leverages cutting-edge techniques, such as machine learning, data analytics, 39 

statistical models, and sensor technologies, to forecast when equipment failure or 40 

degradation is likely to occur [2,6,7]. By analyzing historical data, identifying patterns, 41 

and detecting anomalies, the tools can proactively address issues before they escalate into 42 

costly downtime, unexpected breakdowns, or safety hazards. This proactive approach not 43 

only extends the lifespan of equipment but also optimizes operational continuity and 44 

enhances overall productivity [8]. The significance of predictive maintenance extends 45 
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across a multitude of sectors, ranging from manufacturing and energy production to 46 

transportation and healthcare [9–11]. As organizations seek ways to minimize operational 47 

disruptions, reduce maintenance costs, and maximize the value of their assets, the 48 

adoption of predictive maintenance strategies has become a pivotal step towards 49 

achieving these goals [12]. 50 

Common statistical methods used in predictive maintenance encompass a range of  51 

techniques designed to analyze historical data for detecting anomalies and forecast 52 

equipment failures. The methods include the time series analysis, regression analysis, 53 

survival analysis, Bayesian methods, among others [13,14]. The time series analysis forms 54 

a fundamental aspect of predictive maintenance using classical statistical methods. In this 55 

context, many works have been explored various time series models, including 56 

autoregressive integrated moving average (ARIMA) [15–17], exponential smoothing (ES) 57 

[18,19], and stationary autoregressive integrated moving average (SARIMA) [20,21]. 58 

These models capture patterns and trends within historical data, enabling accurate 59 

forecasting of future equipment failures, and have been applied in different industry 60 

environments. Statistical process control (SPC) techniques have been employed to 61 

monitor equipment performance and identify anomalies that could lead to potential 62 

failures using physical or software aided charts and statistical control methods to detect 63 

deviations from normal operation, facilitating timely maintenance interventions [22,23]. 64 

Weibull analysis, survival analysis, and other reliability models have been used to assess 65 

equipment degradation over time and forecast impending failures [24–27]. Studies have 66 

investigated the modeling of failure data to uncover underlying failure mechanisms and 67 

patterns [28]. Parametric and non-parametric methods have been applied to analyze 68 

failure data distributions and identify factors influencing failure rates. Predictive 69 

maintenance involving classical statistical methods often addresses uncertainties 70 

associated with forecasting. 71 

Therefore, many works explored techniques for quantifying uncertainty intervals, 72 

providing a range of possible outcomes, and aiding decision-making [29–31]. Most works 73 

present case studies and applications demonstrating the efficacy of predictive 74 

maintenance using classical statistical methods across industries such as manufacturing, 75 

energy, and transportation [32,33]. These studies offer insights into successful 76 

implementations and real-world outcomes. The effectiveness of statistical methods was 77 

evaluated comparing with modern data-driven techniques [2,17,34], assessing the 78 

performance, advantages, and limitations of each approach in predictive maintenance 79 

contexts. The drawback for the effective use of modern techniques is the absence of a 80 

sufficient quantity of data, as it is necessary to have enough records to enable learning in 81 

an intelligent system. I addition to this, the maintenance management plays a critical role 82 

in ensuring operational efficiency, minimizing downtime, and optimizing asset 83 

performance. To meet these challenges, organizations are increasingly turning to 84 

advanced solutions that integrate technology and management processes. Among these 85 

solutions, SAP Plant Maintenance (SAP PM), an integral part of the comprehensive SAP 86 

Enterprise Resource Planning (ERP) suite, stands out as a tool that streamlines and 87 

enhances maintenance activities across various industries, with good results reported 88 

[35,36]. 89 

Despite the development of new tools that help optimize maintenance management 90 

processes and the use of established and robust techniques, such as machine learning for 91 

predictive maintenance, there is a significant challenge in effectively executing these tools 92 

when there is limited data available. This is particularly the case when applying these 93 

methods to new equipment, where historical data is not accessible even when is 94 

implemented a real time monitoring system. With the aim of providing an alternative 95 

solution for such scenarios, this study proposes the utilization of classical statistical time 96 

series methods to forecast downtime in automotive assembly equipment. The forecasted 97 

data is intended to serve as crucial information for maintenance management through the 98 
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utilization of the SAP PM tool and its capabilities for continuously database feeding. To 99 

achieve this objective, three time series models are evaluated across five different 100 

equipment families within the plant. Forecasts are made, and their effectiveness is 101 

validated through error calculations. Furthermore, the efficacy of utilizing the forecasted 102 

data for decision-making via the maintenance manager is analyzed. 103 

2. Materials and Methods 104 

To implement predictive maintenance in a system man-aged by SAP PM, we 105 

followed a clearly defined workflow, as illustrated in Figure 1. The data from scheduled 106 

maintenance was regularly registered and managed in a database. This information was 107 

collected and curated to form a time series, which was then utilized for analysis and the 108 

application of statistical models. Three distinct time series models were employed to 109 

determine the most accurate forecasts. These forecast-ed outcomes are vital for decision- 110 

making and are recorded in the management tool based on the forecasts. This information 111 

was then used to facilitate equipment maintenance procedures. 112 

 113 

Figure 1. Flow chart for the implementation of predictive maintenance in a system managed by SAP 114 

PM. 115 

2.1. Maintenance data registration 116 

The data was registered using the SAP PM 7.0 tool, As shown in Table 1, the 117 

information includes the register of each equipment in an automotive production plant 118 

corresponding to the variables: operational time requirements, productive days, recorded 119 

failures by month, and the causes of those failures, which provide insights into machinery 120 

availability. The documented history of failures was defined by the production 121 

department. 122 

Table 1. Equipment downtime log for the specific area in the plant (painting area). 123 
 

Demag input keystroke 1000 kg 

Area Equipment Specialty Date Time 

(min) 

Shift Failure 

Elpo keystroke Electromechanical 

transportation 

19/1/2023 65.00 First Down relay damage 

Elpo keystroke Electromechanical 

transportation 

25/2/2023 36.00 First Damaged chain, 

broken link 

124 
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The manager tool allows to plan, execute, and control maintenance tasks and logistics  125 

performed in the production plant. It involved gathering information ranging from 126 

macro-level technical locations to micro-level frequencies and maintenance tasks. The 127 

maintenance transactions are executed using codes that are directed to different 128 

management areas, according to the database, registers of equipment characteristics, 129 

catalogs, workstations, technical locations, equipment, material lists, routing sheets, and 130 

maintenance plans. 131 

For our case study, we followed a sequential flowchart with steps to reach  132 

maintenance plans based on the previously obtained forecasting times. Each step involved 133 

gathering preliminary information and ensuring its constant updating. The equipment list 134 

was coded using transaction IR01 to obtain the data. For this point, we referred to the 135 

inventories obtained from the company, which provided technical specifications such as 136 

serial numbers, power ratings, amperages, manufacturing years, weight, among others. 137 

The maintenance routing sheets provide detailed maintenance tasks that need to be 138 

performed at regular intervals. We use three types of maintenance routing sheets: 139 

equipment routing sheet (IA01/IA02/IA03), technical location routing sheet 140 

(IA11/IA12/IA13) known as "T" type, and maintenance instruction (IA05/IA06/IA07) 141 

known as "A" type. 142 

2.2. Data curation and times series 143 

Based on the task designations created in the routing sheets, the execution 144 

frequencies were updated. In this case, a weekly maintenance schedule was used as the 145 

baseline, and the frequencies were followed over time. For our study, we filtered the 146 

machinery data from the last three years of operations, considering only the working days, 147 

which averaged 22 days per month. The required time was calculated by multiplying the 148 

number of working days by 60 to convert them to minutes and then by 8, representing the 149 

working hours, defining the time series. However, there was an exception for machines 150 

that operated in groups. Some machines ran 24 hours a day throughout the year 151 

(Phosphate passivation equipment and ECOAT), while others only worked for an 8-hour 152 

shift, which was an important factor in determining the required time. The plant 153 

equipment was classified by type, obtaining 5 groups or families to facilitate the analysis 154 

(Centrifugal pumps, Hoists, Fans, Ecoat, and Phosphate passivation equipment), as 155 

shown in Figure 2. Each group shared similar characteristics and maintenance plans. To 156 

obtain the failure data, we calculated the available times, mean time between failures, 157 

mean repair times, and the operational availability indicator. 158 

For the available time was used the relation between the required time and failure 159 

time, 160 

The mean time between failures (MTF) given by, 161 

162 

MTF = 
Total time avaiable − Inactive time 

Number of breakdowns 
(2) 

The average repair time relates the total maintenance time and the number of 163 

breakdowns, 164 

and the operational availability time given by, 165 

166 

Required time 
AT = 

Failure time 
(1) 

 

Total maintenace time 
TMPR = 

Number of breakdowns 
(3) 
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Availiability time 

D = 
Required time (4) 

In this case, the most relevant data was the average operational availability time. This  167 

allowed us to create graphs that indicated the behavior of the machinery over time and to  168 

conduct a statistical analysis of trend lines. 169 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
170 

Figure 2. Maintenance historical time series obtained by SAP PM register for each equipment family, 171 

the red line corresponds to the maximum operational availability time for, a) Centrifugal pumps, b) 172 

Electromechanical hoits, c) Fans, d) Ecoat, e) Phosphate passivation equipment. 173 

2.3. Time series models 174 

Three time series models were used to forecast equipment downtime, namely Holt- 175 

Winters Exponential Smoothing (HWES) [18,37], Autoregressive Integrated Moving 176 

Average (ARIMA) [15,38,39], and Seasonal Autoregressive Integrated Moving Average 177 

(SARIMA) [40,41]. The results were compared to evaluate the forecasting accuracy of each 178 

method through error calculations. 179 

HWES allows forecasting based on past observations, considering three components 180 

of time series, level, trend, and seasonality. 181 

182 

Where, 𝐹(𝑖+𝑘) is the forecast at step 𝑖 + 𝑘, (𝐿𝑖 + 𝑘 ∗ 𝐵𝑖), correspond to estimated level 183 

at step 𝑖 + 𝑘, and 𝑆(𝑖+𝑘−𝑚) is the estimated seasonal variation of period length 𝑚, at the 184 

same step 𝑖 + 𝑘. 185 

The classical statistical method ARIMA allows to forecast time series by the use of 186 

basic statistics to identify patterns and model components, providing estimations through 187 

least squares and maximum likelihood methods. It uses graphs of Autocorrelation 188 

Function (ACF), and Partial Autocorrelation Function (PACF) of residuals to verify the 189 

validity of the model. The general equation of ARIMA is given by, 190 

Where 𝑌𝑡 − 𝑘 is the accurate forecasting, and 𝑒𝑡 − 𝑘 the residual errors. 191 

And SARIMA is similar to ARIMA, the main difference lies in including of additional 192 

set of autoregressive and moving average components, incorporating seasonality to non- 193 

seasonal components; the two last terms in the follow equation, 194 

𝐹(𝑖+𝑘) = (𝐿𝑖 + 𝑘 ∗ 𝐵𝑖)(𝑆(𝑖+𝑘−𝑚)) (5) 

 

𝑌𝑡 = 𝑓(𝑌𝑡 − 𝑘, 𝑒𝑡 − 𝑘) + 𝑒𝑡 𝑎𝑛𝑑 𝑘 > 0. (6) 
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𝑝 𝑞 𝑃 𝑄 

𝑌𝑡 = 𝑐 + ∑ 𝛼𝑛𝑦𝑡−𝑛 + ∑ 𝜃𝑛𝜖𝑡−𝑛 + ∑ ∅𝑛𝑦𝑡−𝑠𝑛 + ∑ 𝜂𝑛𝜖𝑡−𝑠𝑛 + 𝜖𝑡. 
𝑛=1 𝑛=1 𝑛=1 𝑛=1 

(7) 

The application of these models was calculated using RStudio Version 2023.06.1+524. 195 

3. Results 196 

We evaluated the operational availability time for the equipment families in the plant 197 

in three phases. First, we assessed it with a periodic maintenance mechanism. Then, we 198 

evaluated it using the SAP PM tool. Finally, we used the forecasting data to assess the 199 

feasibility of managing predictive maintenance for the equipment families in the plant. 200 

3.1. Maintenance with SAP 201 

Before implementing SAP PM in the plant, we conducted an evaluation of equipment 202 

availability over the last twelve months. We found that with traditional pro-grammed 203 

maintenance, the lowest operational availability time was 78.84%, and the average was 204 

94.47%. When using the management tool, the lowest value was 91.76%, and the average 205 

was 97.03%. This implies that by using the tool, equipment operational availability 206 

improved by 12.92% for the lowest register and 5.27% on average. The costs for corrective 207 

maintenance were similar for both methods, but the costs associated with the overall 208 

maintenance process (including preventive and corrective maintenance) reduced 209 

proportionally with increased availability time. 210 

3.2. Forecasting of failures 211 

With the aim of enhancing equipment availability through the implementation of the 212 

maintenance management tool, three time series models were applied to the data 213 

recorded over 36 months. We conducted the fitting for 24 observations and forecasted the 214 

next 12 values. To assess the performance of each model, we compared the forecasting 215 

errors for each equipment family, as illustrated in Figure 2. 216 

For centrifugal pumps, we employed HWES, which exhibited a fitting pattern 217 

following the exponential trend of observations. ARIMA (0,0,1) was utilized, and its fitting 218 

was based on the average of the time series, with a one-observation displacement into the 219 

future until the 24th observation. In contrast, SARIMA (0,0,1) fit the observations 220 

completely until the 12th observation when the time series' seasonality changed. The time 221 

series exhibited a change at the 27th observation, and the forecasting of HWES and 222 

ARIMA could not react to this change due to being out of seasonality. SARIMA, on the 223 

other hand, showed a slight change starting at the 24th observation, following the 224 

seasonality of the last 6 observations. None of the three models provided valid forecasting 225 

from a statistical standpoint. 226 

Regarding equipment availability, they broke the seasonality for unplanned 227 

corrective maintenance. For periodic maintenance, the ARIMA and SARIMA models 228 

significantly improved forecasting, but they did not react to random changes with the 229 

(0,0,1) model in both cases. The forecasted values with ARIMA and HWES allowed us to 230 

plan for maintenance within a three-month window in the future. Recalculating after 231 

monthly maintenance would provide useful information for planning the next three 232 

months of maintenance. 233 

In the case of electromechanical hoists, where the first three-month window exhibits 234 

a change in seasonality, HWES and ARIMA (0,1,0) maintain a linear trend, while SARIMA 235 

(2,1,0) reacts to these changes by following the seasonality of the last 6 results. For this 236 

equipment family, the forecasts would be most beneficial for taking actions within the 237 

next three values, especially considering that SARIMA replicated the observations with a 238 

one-observation delay. These results would provide the opportunity to schedule 239 

maintenance a month later. 240 
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Figure 3. Forecasting for available time of an individual element of equipment family a) Centrifugal 265 

pump, b) Hoits, c) Fans, d) Ecoat, e) Phosphate passivation equipment. 266 

3.3. Predictive maintenance with SAP PM 267 

Following the results illustrated in Figure 3, the forecasted values were recorded in 268 

the management tool, and the first four test maintenance cycles were executed for each 269 

equipment family. Prior to the execution of predictive maintenance, it was necessary to 270 
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evaluate the equipment's condition and act for the next intervention, whether it be 271 

preventive or corrective maintenance. 272 

For the electromechanical hoists, fans, and phosphate passivation equipment, the 273 

forecasted values proved beneficial in preventing failures, thus improving operational 274 

availability time. However, this also increased the time allocated for analysis performed 275 

by the maintenance chief. The time dedicated to analysis and decision-making 276 

represented an additional 5% in maintenance costs, but the gained availability time 277 

through predictive maintenance exceeded 20%. These results resulted in a 15% cost 278 

savings for the first four maintenance cycles. 279 

For the centrifugal pumps and the Ecoat family, there was only a slight improvement 280 

in uptime after the first maintenance, and it was necessary to evaluate the equipment to 281 

prevent future downtime. During these four months of testing, the models provided a 282 

good fit for seasonal preventive maintenance, but obtaining better forecasting would 283 

require more observations. 284 

4. Discussion 285 

4.1. Data colection 286 

Most of the data was collected by measures in-situ following a planned maintenance, 287 

feeding the database of the management tool. The collection of data from maintenance 288 

workers represents a significant challenge due to the absence of crucial maintenance 289 

information details. Requesting feedback from workers typically involves additional time 290 

and increases the cost of maintenance. These situations have contributed to having 291 

incomplete records or records lacking essential details, which, in turn, increases the risk 292 

of equipment failures. The historical data depicted in Figure 2, corresponds to validated 293 

data, incorporating 20% of feedback provided to enhance the accuracy of the records. 294 

The absence of sensors embedded in equipment significantly increases the 295 

uncertainty of the records, relying solely on feedback from workers. This, in turn, 296 

diminishes the effectiveness of forecasting accuracy, making it difficult to make informed 297 

decisions aimed at preventing equipment failures. 298 

4.2. Forecasting and decsition taking 299 

One critical aspect when utilizing statistical models to forecast downtimes in 300 

equipment pertains to the equipment's lifespan, which becomes increasingly crucial as 301 

equipment approaches the end of its operational life. In the specific context of the 302 

equipment available within the area of study, a majority of it falls within the mid-point of 303 

its operational lifespan. Furthermore, routine maintenance activities result in stationary 304 

time series data in most cases. However, the initial twelve months of recorded data 305 

correspond to a period characterized by sporadic monitoring and maintenance due to the 306 

disruptions caused by the ongoing pandemic. Additionally, equipment availability 307 

experiences intermittent halts, including extended pauses for equipment preparation and 308 

unplanned stoppages due to equipment failures, as visually represented in Figure 2. The 309 

inclusion of random information in the recorded data has the effect of diminishing the 310 

effectiveness of forecasting accuracy when employing stationary-based models. 311 

Nevertheless, this random data contributes valuable insights to the database, as it 312 

mirrors real-life situations and accounts for unforeseeable events during regular 313 

equipment operation. To address this complexity, the analysis of time series data was 314 

conducted over a 24-month period characterized by higher variability. Additionally, a 315 

second cluster was created for the last 12 months, characterized by stationary behavior, 316 

where the statistical models exhibited their best fit to the data. Consequently, forecasting 317 

within this stationary cluster yielded minimal error rates. This approach allowed for a 318 

more comprehensive understanding of equipment downtime forecasting, considering 319 

both variable and stable periods within the dataset. 320 
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The time series models employed for forecasting in this study were carefully chosen 321 

based on the observed data patterns, primarily because of the limited number of records 322 

available. In situations where datasets consist of a substantial number of observations, 323 

machine learning methods frequently emerge as the optimal choice for time series 324 

forecasting. These methods prove highly effective when working with datasets that 325 

encompass hundreds of records and often yield even better results when dealing with 326 

datasets containing thousands of records [7,42,43]. The advantage of employing machine 327 

learning techniques in such scenarios lies in their ability to capture complex patterns and 328 

relationships within the data. With a larger volume of records, these methods can learn 329 

more intricate and nuanced patterns, resulting in more accurate and reliable time series 330 

forecasts. However, in our specific case, the maintenance data were collected through 331 

periodic records, and the dataset consisted of fewer than 40 instances or incidents. 332 

In industries where not all equipment benefits from continuous monitoring via  333 

sensors, yet the equipment remains within its operational lifespan, the implementation of 334 

time series models presents a valuable strategy for improving equipment uptime without 335 

the need to overhaul entire equipment fleets. This approach is not only effective but also 336 

economical, particularly when compared to the alternative of updating equipment 337 

families. By leveraging time series models, industries can accurately predict downtimes, 338 

optimizing equipment availability without incurring the significant costs associated with 339 

upgrading entire equipment inventories. This approach proves especially advantageous 340 

when dealing with datasets characterized by periodic records, as it allows for precise 341 

forecasting even in scenarios where registers are limited. Consequently, it stands as a 342 

practical and cost-effective solution for enhancing operational efficiency, especially when 343 

continuous sensor-based monitoring is not feasible. 344 

5. Conclusions 345 

In this work, we present an alternative approach to address the challenge of 346 

improving equipment availability in an automotive assembly plant. We used three time 347 

series models to forecast future equipment downtime, advocating the use of SAP PM for 348 

effective maintenance process management. For this proposal, the historical data was 349 

collected through direct measurements from equipment following scheduled 350 

maintenance in five equipment families. Subsequently, we analyzed the data to apply the 351 

time series models and identify which model best approximated the observations and 352 

offered better forecasting. The results of the forecasts were tested by assessing the 353 

feasibility of making maintenance decisions based on the equipment type. 354 

The results showed that for three of the families (electromechanical hoist, fans, and 355 

phosphate passivation equipment), the models contributed to saving 15% of operational 356 

availability time. However, for the family of centrifugal pumps and Ecoat, the time saved 357 

was minimal because the forecasting values did not extend beyond a single event in the 358 

future, being restricted to the seasonal behavior of past events. When comparing these 359 

results with the times recorded using predictive maintenance planning, we observed a 360 

significant improvement in the management process and the application of the three 361 

models in this case study. The use of three models for each equipment dataset would be 362 

optimal, but it would necessitate an additional system to make decisions through 363 

continuous calculations and generate new forecasting results. The complexity increases 364 

when the implementation of forecasting models scales with the number of machines to be 365 

monitored. 366 

The classification into equipment families and the use of time series model to forecast 367 

equipment downtimes is presented as an alternative option to control maintenance costs 368 

and improve equipment availability time, without the need to update with sensor 369 

monitoring systems or change to new sensor-embedded equipment. This option also 370 

provides the opportunity to maximize the lifespan of equipment with optimal 371 

performance. 372 
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