

UNIVERSIDAD TECNOLÓGICA INDOAMÉRICA

FACULTAD DE INGENIERÍAS Y TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN

CARRERA DE INGENIERÍA INDUSTRIAL

TEMA:

OPTIMIZACIÓN DEL PROCESO DE GENERACIÓN DE ENERGÍA RENOVABLE POR MEDIO DE UNA CAJA MULTIPLICADORA PARA UNA PICO HIDROELÉCTRICA EN EL CANAL DE RIEGO AMBATO – HUACHI – PELILEO.

Trabajo de titulación previo a la obtención del título de Ingeniero Industrial.

Modalidad Presencial.

Autor(a)

Mullo Coque Pablo Sebastián.

Tutor(a)

PhD. Manuel Ignacio Ayala Chauvin.

AUTORIZACIÓN POR PARTE DEL AUTOR PARA LA CONSULTA, REPRODUCCIÓN PARCIAL O TOTAL, Y PUBLICACIÓN ELECTRÓNICA DEL TRABAJO DE TÍTULACIÓN

Yo, Pablo Sebastian Mullo Coque, declaro ser autor del Trabajo de Titulación con el nombre "OPTIMIZACIÓN DEL PROCESO DE GENERACIÓN DE ENERGÍA RENOVABLE POR MEDIO DE UNA CAJA MULTIPLICADORA PARA UNA PICO HIDROELÉCTRICA EN EL CANAL DE RIEGO AMBATO – HUACHI – PELILEO", como requisito para optar al grado de Ingeniero Industrial y autorizo al Sistema de Bibliotecas de la Universidad Tecnológica Indoamérica, para que con fines netamente académicos divulgue esta obra a través del Repositorio Digital Institucional (RDI-UTI).

Los usuarios del RDI-UTI podrán consultar el contenido de este trabajo en las redes de información del país y del exterior, con las cuales la Universidad tenga convenios. La Universidad Tecnológica Indoamérica no se hace responsable por el plagio o copia del contenido parcial o total de este trabajo.

Del mismo modo, acepto que los Derechos de Autor, Morales y Patrimoniales, sobre esta obra, serán compartidos entre mi persona y la Universidad Tecnológica Indoamérica, y que no tramitaré la publicación de esta obra en ningún otro medio, sin autorización expresa de la misma. En caso de que exista el potencial de generación de beneficios económicos o patentes, producto de este trabajo, acepto que se deberán firmar convenios específicos adicionales, donde se acuerden los términos de adjudicación de dichos beneficios.

Para constancia de esta autorización, en la ciudad de Ambato, a los 23 días del mes de septiembre de 2020, firmo conforme:

Autor: Pablo Sebastian Mullo Coque

Firma: Número de Cédula: 0503772832 Dirección: Cotopaxi, Salcedo, Parroquia San Miguel, Barrio San Antonio. Correo Electrónico: psmcoki@gmail.com Teléfono: 032597448

APROBACIÓN DEL TUTOR

En mi calidad de Tutor del Trabajo de Titulación "OPTIMIZACIÓN DEL PROCESO DE GENERACIÓN DE ENERGÍA RENOVABLE POR MEDIO DE UNA CAJA MULTIPLICADORA PARA UNA PICO HIDROELÉCTRICA EN EL CANAL DE RIEGO AMBATO – HUACHI – PELILEO" presentado por Pablo Sebastian Mullo Coque, para optar por el Título de Ingeniero Industrial,

CERTIFICO

Que dicho trabajo de investigación ha sido revisado en todas sus partes y considero que reúne los requisitos y méritos suficientes para ser sometido a la presentación pública y evaluación por parte del Tribunal Examinador que se designe.

Ambato, 23 de septiembre del 2020.

PhD. Manuel Ignacio Ayala Chauvin

DECLARACIÓN DE AUTENTICIDAD

Quien suscribe, declaro que los contenidos y los resultados obtenidos en el presente trabajo de investigación, como requerimiento previo para la obtención del Título de Ingeniero Industrial, son absolutamente originales, auténticos y personales y de exclusiva responsabilidad legal y académica del autor

Ambato, 23 de septiembre 2020.

Pablo Sebastian Mullo Coque 0503772832

APROBACIÓN TRIBUNAL

El trabajo de Titulación, ha sido revisado, aprobado y autorizada su impresión y empastado, sobre el Tema: "OPTIMIZACIÓN DEL PROCESO DE GENERACIÓN DE ENERGÍA RENOVABLE POR MEDIO DE UNA CAJA MULTIPLICADORA PARA UNA PICO HIDROELÉCTRICA EN EL CANAL DE RIEGO AMBATO – HUACHI – PELILEO, previo a la obtención del Título de Ingeniero Industrial, reúne los requisitos de fondo y forma para que el estudiante pueda presentarse a la sustentación del trabajo de titulación.

Ambato, 23 de septiembre del 2020.

Muzo Villacis Segundo Pedro PRESIDENTE DEL TRIBUNAL

Cumbajin Alferez Myriam Emperatriz VOCAL

Cruz Villacis Juan Serafin VOCAL

DEDICATORIA.

Este trabajo de titulación va dedicado para mis padres quienes siempre supieron guiarme y apoyarme en todas las vicisitudes existentes en mi vida, al igual que para mis hermanos y resto de mi familia que con sus consejos ayudaron a formarme como persona de bien, así como también a una persona especial presente en mi vida durante 9 años.

Finalmente quiero dedicar esta tesis a todos mis amigos que en el transcurso de la vida universitaria pudimos disfrutar de momentos malos como buenos especialmente al grupo amiguis.

AGRADECIMIENTO.

Agradezco a Dios quien con su bendición permitió alcanzar esta meta tan anhelada.

De igual manera agradezco a la Universidad Tecnológica Indoamérica, en especial a la carrera de Ingeniería Industrial quienes con sus conocimientos y enseñanzas me formaron como un excelente profesional.

Finalmente quiero expresar mi más grande y sincero agradecimiento al PhD. Ignacio Ayala, principal colaborador durante todo este proceso de investigación, quien con su dirección, conocimiento y enseñanza permitió desarrollar este trabajo.

Índice de Contenido.

AUTORIZACIÓN POR PARTE DEL AUTOR PARA LA CONSULTA,
REPRODUCCIÓN PARCIAL O TOTAL, Y PUBLICACIÓN ELECTRÓNICA
DEL TRABAJO DE TÍTULACIÓNI
APROBACIÓN DEL TUTORII
DECLARACIÓN DE AUTENTICIDAD III
APROBACIÓN TRIBUNAL IV
DEDICATORIAV
AGRADECIMIENTOVI
Índice de Tablas IX
Índice de Gráficos XI
Índice de ImágenesXIII
Índice de AnexosXIV
Resumen EjecutivoXVI
SummaryXVII
CAPITULO I1 -
Introducción1 -
Antecedentes 2 -
Justificación 3 -
Objetivos 4 -
Objetivo general: 4 -
Objetivos Específicos: 4 -
CAPITULO II 5 -
INGENIERÍA DEL PROYECTO 5 -
Diagnostico Actual: 5 -
Área de estudio 8 -
Modelo operativo:9 -

Desarrollo del modelo operativo:	
CAPITULO III	
PROPUESTA Y RESULTADOS ESPERADOS	
El sistema de energía renovable:	
Canal de riego:	
Caracterización de la Mini turbina Michell – Banki:	14
Generador síncrono de imanes permanentes:	16
Sistemas de transmisión de potencia.	
Presentación de la propuesta:	
Diseño matemático de un mecanismo de multiplicación	
Modelado virtual	
Simulación	63
Resumen:	104
Lubricación	105
Cronograma de actividades:	105
Análisis de Costos	107
CAPITULO IV	108
CONCLUSIONES Y RECOMENDACIONES	108
Conclusiones:	108
Recomendaciones:	109
ANEXOS	110
Bibliografía	155

Índice de Tablas.

Tabla 1. Características de la Modelación de las Secciones Transversales de
canal de riego 6 -
Tabla 2. Actividades para Realizarse en la Investigación. - 9
Tabla 3: Características de la Mini Turbina Michell – Banki. 15
Tabla 4. Datos del Generador Síncrono de Imanes Permanentes de Flujo Axial
Tabla 5. Datos del Generador Síncrono de Imanes Permanentes del Flujo Radial
Tabla 6: Comparación entre los tipos de engranes utilizados en las transmisiones
Tabla 7. Cuadro de resumen 29
Tabla 8. Resistencia a la Fatiga Superficial Calculada, Seleccionada y Coeficiente
de Seguridad
Tabla 9. Resumen de los Valores Obtenidos para la Flecha 1. 60
Tabla 10. Resumen de los Valores Obtenidos para la Flecha 2. 61
Tabla 11. Resumen de los Valores Obtenidos para la Flecha 3. 61
Tabla 12. Factores de Seguridad Calculados y Esfuerzo máximos Obtenidos para
cada Flecha62
Tabla 13. Datos del Material Acero AISI 1020. 64
Tabla 14. Limite Elástico del Material Acero Estructural
Tabla 15. Resistencia a la Tracción del Material Acero Estructural. 65
Tabla 16. Resistencia a la Tracción del Material Acero Estructural. 65
Tabla 17. Datos del Mallado del Conjunto Utilizado en Todas las Simulaciones
Tabla 18. Resultados Generales de la Simulación de Análisis Estructural Estático
Tabla 19. Resultados de la Deformación Total. 69
Tabla 20. Resultados de la Tensión Elástica Equivalente. 70
Tabla 21. Resultados Obtenidos del Estrés Equivalente
Tabla 22. Resultados Generales de la Simulación de Análisis Estructural Estático

Tabla 23. Resultados de la Deformación Total	74
Tabla 24. Resultados de la Tensión Elástica Equiva	alente 75
Tabla 25. Resultados Obtenidos del Estrés Equival	ente
Tabla 26. Resultados Generales de la Simulación d	le Análisis Transitorio 78
Tabla 27. Resultados de la Deformación Total	
Tabla 28. Resultados del Estrés Equivalente.	
Tabla 29. Resultados Generales de la Simulación d	le Respuesta Armónica 85
Tabla 30. Niveles de Frecuencia Utilizados	
Tabla 31. Niveles de Frecuencia Utilizados	
Tabla 32. Resultados Generales de la Simulación I	Dinámica 91
Tabla 33. Resultados Obtenidos de la Deformación	n Total 92
Tabla 34. Resultados Obtenidos de la Estrés Equiv	alente
Tabla 35. Resultados Obtenidos de la Máxima Ten	sión de Corte94
Tabla 36. Datos del Mallado Respectivo.	
Tabla 37. Resultados Generales de la Simulación d	le Análisis Estructural Estático.
Tabla 38. Resultados Obtenidos de la Deformación	n Total 99
Tabla 39. Resultados Obtenidos del Estrés Equival	ente
Tabla 40. Datos del Mallado Generado	
Tabla 41. Resultados Generales del análisis Estru	uctural Estático de la flecha 2.
Tabla 42. Resultados de la Deformación Total Fleo	cha 2 103
Tabla 43. Resultados del Estrés Equivalente.	
Tabla 44. Resumen del Análisis Estructural Engrar	nes 104
Tabla 45: Resumen del Análisis Transitorio por Tr	enes 104
Tabla 46: Resumen del Análisis Armónico por Tre	nes104
Tabla 47: Resumen Dinámica Explicita por Trenes	
Tabla 48: Resumen del Análisis Estructural de las	Flechas 104
Tabla 51. Cronograma de Actividades	
Tabla 52. Análisis de Costo de los Componentes	
Tabla 53. Costo Total.	

Índice de Gráficos.

Gráfico 1: Diagrama de Red de las Actividades Expuestas9 -
Gráfico 2: Actividades a Realizarse en el Modelo Operativo 10
Gráfico 3: Diagrama Ilustrativo para el Análisis de los Engranes 19
Gráfico 4: Diagrama Ilustrativo para el Análisis de los Engranes
Gráfico 5: Diagrama de Fuerza Aplicada en el Eje sentido x-y 30
Gráfico 6: Diagrama de Fuerza Aplicada en el Eje sentido y-z 31
Gráfico 7: Diagrama Ilustrativo para el Análisis de Toque en las Flechas
Gráfico 8: Diagrama de las Áreas Generadas por la fuerza y reacciones en el
sentido x-y
Gráfico 9: Momento Flector Generado por la Fuerza y Reacciones en el sentido x-
y
Gráfico 10: Diagrama de las Áreas Generadas por la fuerza y reacciones en el
sentido y-z
Gráfico 11: Momento Flector Generado por la Fuerza y Reacciones en el sentido
y-z
Gráfico 12: Diagrama de Fuerza Aplicada en el Eje sentido x-y 40
Gráfico 13: Diagrama de Fuerza Aplicada en el Eje sentido y-z 41
Gráfico 14: Diagrama de las Áreas Generadas por la fuerza y reacciones en el
sentido x-y
Gráfico 15: Momento Flector Generado por la Fuerza y Reacciones en el sentido
х-у
Gráfico 16: Diagrama de las Áreas Generadas por la fuerza y reacciones en el
sentido y-z.)
Gráfico 17: Momento Flector Generado por la Fuerza y Reacciones en el sentido
y-z
Gráfico 18: Diagrama de Fuerza Aplicada en el Eje sentido x-y 51
Gráfico 19: Diagrama de Fuerza Aplicada en el Eje sentido y-z 52
Gráfico 20: Diagrama de las Áreas Generadas por la fuerza y reacciones en el
sentido x-y
Gráfico 21: Momento Flector Generado por la Fuerza y Reacciones en el sentido
х-у

Gráfico 22: Diagrama de las Áreas Generadas por la fuerza y reacciones en el
sentido y-z
Gráfico 23: Momento Flector Generado por la Fuerza y Reacciones en el sentido
y-z
Gráfico 24: Grafica de los Datos de la Deformación Total
Gráfico 25: Grafica de los Datos de la Tensión Equivalente
Gráfico 26: Grafica de los Datos del Estrés Equivalente72
Gráfico 27: Grafica de los Datos de la Deformación Total
Gráfico 28: Grafica de los Datos de la Tensión Equivalente
Gráfico 29: Grafica de los Datos del Estrés Equivalente
Gráfico 30: Grafica de los Datos de la Deformación Total
Gráfico 31: Grafica de los Datos del Estrés Equivalente
Gráfico 32: Grafica de los Valores obtenidos en la Deformación Total Armónica.
Gráfico 33: Gráfica de los valores obtenidos en el Estrés Equivalente Armónico.
Gráfico 34: Grafica de las Frecuencias en el Engrane 2
Gráfico 35: Grafica de las Frecuencias en el Engrane 3
Gráfico 36: Grafica de la Deformación Total
Gráfico 37: Grafica del Estrés Equivalente
Gráfico 38: Gráfica de la Máxima Tensión de Corte

Índice de Imágenes.

Imagen 1: Características del Canal de Riego.	- 6 -
Imagen 2: Ficha Técnica de la mini – turbina Michell Banki	. 7 -
Imagen 3: Secciones del canal de riego	. 13
Imagen 4: Modelo de la mini turbina Michell – Banki	. 15
Imagen 5: Caja Multiplicadora Ensamblada en SolidWorks	. 62
Imagen 6: Ingreso del Ultimo Valor del Engrane y su Aproximada Velocidad.	63
Imagen 7: Valores Obtenidos de la Simulación	. 64
Imagen 8: Mallado del Conjunto	. 67
Imagen 9: Deformación Total	. 69
Imagen 10: Tensión Elástica Equivalente	. 70
Imagen 11: Estrés Equivalente	. 71
Imagen 12: Deformación Total	. 74
Imagen 13: Tensión Elástica Equivalente	. 75
Imagen 14: Estrés Equivalente	. 76
Imagen 15: Deformación Total	. 79
Imagen 16: Estrés Equivalente	. 81
Imagen 17: Deformación Total	. 86
Imagen 18: Estrés Equivalente	. 87
Imagen 19: Deformación Total	. 92
Imagen 20: Estrés Equivalente	. 93
Imagen 21: Máxima Tensión de Corte	. 94
Imagen 22: Flecha con el Mallado Respectivo.	. 96
Imagen 23: Deformación Total Flecha 1	. 99
Imagen 24: Estrés Equivalente Flecha 1	. 99
Imagen 25: Mallado de la Flecha 2	100
Imagen 26: Deformación Total Flecha 2.	103
Imagen 27: Estrés Equivalente Flecha 2	103

Índice de Anexos.

Anexo 1: Constantes empíricas A, B y C de la ecuación 16, ancho de la cara F en
pulgadas
Anexo 2: Coeficiente elástico
Anexo 3: Factor de ciclos de esfuerzos de resistencia a la picadura Zn 110
Anexo 4: Factores geométricos j de engranes rectos
Anexo 5: Factor de ciclos de esfuerzo repetidamente aplicadas de resistencia a la
flexión Yn 111
Anexo 6: Estimaciones de los Factores de Concentración de Esfuerzo 112
Anexo 7: Resistencias Mínimas a la Tensión y a la Fluencia ASTM 112
Anexo 8: Parámetros en el Factor Superficial de Marín 112
Anexo 9: Eje Redondo con Filete en el Hombro en Flexión 113
Anexo 10: Sensibilidad a la Muesca
Anexo 11: Eje Redondo con Filete en el Hombro en Torsión 114
Anexo 12: Sensibilidad a la Muesca de Materiales Sometidos a Torsión Inversa.
Anexo 13: Catalogo de Anillos de Retención 115
Anexo 14: Eje Redondo con Ranura de Fondo Plano en Flexión 116
Anexo 15: Modelación de la Sección Transversal 1
Anexo 16: Modelación de la Sección Transversal 2
Anexo 17: Modelación de la Sección Transversal 3
Anexo 18: Modelación de la Sección Transversal 4
Anexo 19: Modelación de la Sección Transversal 5
Anexo 20: Modelación de la Sección Transversal 6
Anexo 21: Esquematización de las Secciones Transversales del Canal de Riego.
Anexo 22: Esquematización de las Secciones Transversales del Canal de Riego.
Anexo 23: Esquematización de las Secciones Transversales del Canal de Riego.
Anexo 24: Diagrama de Distribución de Velocidades – Sección 1 121
Anexo 25: Diagrama de Distribución de Velocidades – Sección 2 121

Anexo 26: Diagrama de Distribución de Velocidades – Sección 3 122
Anexo 27: Diagrama de Distribución de Velocidades – Sección 4 122
Anexo 28: Diagrama de Distribución de Velocidades – Sección 5 123
Anexo 29: Diagrama de Distribución de Velocidades – Sección 6 123
Anexo 30: Plano General del Ensamble 124
Anexo 31: Plano de la Carcasa
Anexo 32: Plano de la Chaveta
Anexo 33: Plano de la Flecha 2
Anexo 34: Plano de la Polea
Anexo 35: Plano de la Flecha 1
Anexo 36: Análisis de los Engranes N4 y N5
Anexo 37: Análisis de la Flecha 3
Anexo 38: Resistencia a la Fatiga por Contacto de Acero Completamente
Endurecido
Anexo 39: Numero de Esfuerzo de Flexión Permisible para Acero Completamente
Endurecido
Anexo 40: Nombre de los Símbolos Utilizados en el Cálculo de los Engranes. 153
Anexo 41: Nombre de los Símbolos Utilizados en el Cálculo de las Flechas 154

UNIVERSIDAD TECNOLÓGICA INDOAMÉRICA FACULTAD DE INGENIERÍA Y TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN

CARRERA DE INGENIERÍA INDUSTRIAL

TEMA:

"OPTIMIZACIÓN DEL PROCESO DE GENERACIÓN DE ENERGÍA RENOVABLE POR MEDIO DE UNA CAJA MULTIPLICADORA PARA UNA PICO HIDROELÉCTRICA EN EL CANAL DE RIEGO AMBATO – HUACHI – PELILEO."

> Autor: Mullo Coque Pablo Sebastián. Tutor: PhD. Manuel Ignacio Ayala Chauvin.

Resumen Ejecutivo.

En el presente trabajo se pretende optimizar el proceso de generación de una pico hidroeléctrica, mediante la implementación de una caja multiplicadora. La función de la caja multiplicadora es acondicionar la velocidad de rotación del rotor para adaptarla a los valores requeridos por el generador síncrono de imanes permanentes. El problema a solucionar es debido a que con las revoluciones normales (100 rpm) que ingresan a este generador produce baja potencia. El método aplicado se compone de las siguientes fases: caracterización de los recursos hidráulicos, en donde se determinó la potencia hidráulica explotable; el diseño conceptual y de detalle, en donde se determinaron las dimensiones y se generaron los planos de fabricación de la caja multiplicadora; y en la última fase se realizó la validación del diseño por medio de simulaciones virtuales en el Software de ANSYS del sistema que son comparables con los cálculos realizados. Con este sistema se logrará llegar a 625 revoluciones por minuto, con lo cual, se alcanzó la velocidad de rotación requerida por el generador de energía eléctrica de la pico hidroeléctrica. Además, se realizaron cálculos con 600 rpm con los dos tipos de generadores axial y radial logrando así obtener 1.6 kW y 2 kW respectivamente. Finalmente, la energía generada será destinada para la iluminación del canal y se beneficiará a la zona cercana al estudio, explotando de manera sostenible los recursos logrando así generar energía eléctrica renovable y de proximidad.

Palabras Claves: pico hidroeléctrica, multiplicador de revoluciones, energías renovables.

UNIVERSIDAD TECNOLÓGICA INDOAMÉRICA FACULTAD DE INGENIERÍA Y TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN CARRERA DE INGENIERÍA INDUSTRIAL

TOPIC:

"OPTIMIZATION OF THE RENEWABLE ENERGY GENERATION PROCESSES THROUGH A MULTIPLIER BOX FOR A HYDROELECTRIC PEAK IN THE IRRIGATION CHANNEL AMBATO - HUACHI - PELILEO."

> Author: Mullo Coque Pablo Sebastián. Tutor: PhD. Manuel Ignacio Ayala Chauvin.

Summary.

The present work aims to optimize the generation process of a hydroelectric peak, through the implementation of a multiplier box. The function of the multiplier box is to condition the rotational speed of the rotor to adapt to the values required by the permanent magnet synchronous generator. The problem that needs to be solved is that, the generator receives the normal revolutions (100 rpm) however, this produces low power. The applied method is composed by the following phases: characterization of hydraulic resources, where the exploitable hydraulic power was determined; the conceptual and detailed design, where the dimensions were determined and the manufacturing plans for the multiplier box were generated; and in the last phase the design validation was carried out through virtual simulations in the ANSYS Software of the system that are compatible with the calculations performed. With this system, it will be possible to reach 625 revolutions per minute, which will allow for the rotational speed required by the electric power generator of the hydroelectric peak, to be reached. In addition, calculations were made with 600 rpm with the two types of axial and radial generators, thus achieving 1.6 kW and 2 kW respectively. Finally, the energy generated will be used to illuminate the channel and will benefit the area near the study, exploiting the resources in a sustainable way, thus generating renewable and local electricity.

Keywords: pico-hydro, revolution multiplier, renewable energy.

CAPITULO I

Introducción.

Frente al crecimiento de la economía y la industria a nivel mundial, el agotamiento de los combustibles fósiles es una realidad que se aumenta con el paso de los días. Según estadísticas del gobierno de los Estados Unidos el consumo de energía eléctrica, en 2003 fue de 14781 TW, en 2010 de 20000 TW y el pronóstico para el 2030 es de 30116 TW (Castillo García, 2017).

En Ecuador en el año 2017 se tiene un consumo de energía eléctrica de 19427.56 GW que corresponde a un consumo per capital de 1157.99 KW/habitantes («Consumo Anual Per Cápita – ARCONEL», 2017).

Sin duda alguna es necesario un cambio de matriz energética y comenzar con la implementación de sistemas de energía renovables amigables con el ambiente, que, por ende, nos ayudara con el manejo sostenibles del planeta tierra. Por esta razón, en la presente investigación se pretende mejorar el sistema de generación renovable de una pico hidroeléctrica en el canal de riego Ambato – Huachi – Pelileo. Este objetivo se logrará acondicionando las revoluciones a través del diseño y modelamiento de una caja multiplicadora para que en conjunto con la turbina y generador alcanzar 2 KW.

La característica principal de esta caja multiplicadora es acondicionar las revoluciones de salida, para así, lograr mejorar los parámetros de expulsión del generador.

Para analizar este problema, es necesario realizar un modelamiento matemático y un diseño conceptual que nos permita obtener la geometría, materiales y dimensiones que cumplan las condiciones de resistencia.

Además, esta investigación tiene como objetivo impulsar el uso de las energías renovables de proximidad. Para ello se cuenta con la guía y asesoramiento de la Universidad Tecnológica Indoamérica, del centro de investigación y la colaboración de la Universidad Técnica de Ambato.

Con los datos hidráulicos del canal de riego y con los parámetros técnicos de la turbina michell – banki; se procede a realizar una investigación de tipo técnica, con la utilización de recursos bibliográficos, como de recursos tecnológicos.

Antecedentes.

La energía eléctrica con el paso de los años se ha convertido en algo fundamental para el ser humano y actualmente es la energía más sofisticada y que permite su transporte a lugares lejanos de forma eficaz y de costo mínimo (Schallenberg et al., 2008).

El sector energético es uno de los pilares fundamentales a nivel mundial, ya que es esencial para todas las actividades productivas y de consumo para el hogar (Vázquez, 2014), es por esto que con el agotamiento de los combustibles fósiles crea la necesidad del cambio a energías limpias que ayuden a contrarrestar el cambio climático que se vive hoy en día.

El sistema de energía renovable que se desea implementar es de bajas revoluciones es ahí donde nace la necesidad de incrementar las mismas mediante una caja multiplicadora que en conjunto con la mini turbina y el generador puedan suministrar la suficiente energía eléctrica para iluminar el canal de riego.

Por otro lado se cuenta con investigaciones de diseño de cajas multiplicadoras para aerogeneradores que nos servirá como guía en la cual se realiza una caja multiplicadora para un generador de 30 kW de capacidad, con el fin de aprovechar al máximo las rpm generadas por las palas de este conjunto, es así donde nace el diseño conceptual de esta caja que se desarrollara con engranes helicoidales (tipo planetarios), ya que el torque y momento que genera el sistema es alto, logrando así satisfacer las necesidades de diseño requeridas en esta caja (Contreras et al. 2018); al igual que diseño de caja multiplicadora para turbinas eólicas, en donde se detalla los dos tipos de cajas que se pueden utilizar en este tipo de conjuntos, así como también lo más relevante que es tipo de desgastes que pueden sufrir estos con el paso del tiempo de funcionamiento (Laureano Moya Rodríguez y Chagoyén Méndez, 2012), por lo tanto dotando de información complementaria para el concepto de diseño de nuestra caja multiplicadora.

Para nuestra idea de diseño se tomó en consideración el diseño y simulación de una caja reductora de velocidad, que en teoría el funcionamiento contrario permite la multiplicación de la velocidad tangencial, es ahí donde nos ayuda esta investigación en donde se caracteriza paso a paso los factores y puntos de diseño que se debe tener en cuenta complementando así ideas y cuestiones a tener en cuenta, como el cambio de esfuerzos por el material escogido en los engranes (Esteban García, 2003).

Justificación.

El sector energético a nivel mundial tiene una importancia trascendental y es fundamental para la economía, industria y vida diaria; es por esto que para el Ecuador es un tema de vital, ya que es necesario el cambio de matriz energética que ayude a minimizar el cambio climático que se ha producido en estos tiempos por el uso o quema de combustibles fósiles a nivel mundial y una de las soluciones es implementar sistemas de energía renovables.

El Ecuador un país mega diverso posee todos los recursos necesarios para poder implementar estos tipos de sistemas que beneficien el cambio de la matriz energética del país, por lo tanto es aquí donde nace la **importancia** para este proyecto de investigación, debido a que se tiene los recursos hídricos, en este caso de un canal de riego con un caudal de 0.9 m^3 /s, una mini – turbina Michell – Banki que genera 100 rpm y que en conjunto con el generador y la caja multiplicadora sea capaz de producir energía.

Con el avance de la tecnología y el agotamiento de las energías no renovables este proyecto tiene un **impacto** de gran importancia para seguir desarrollando investigaciones de mejoras y así lograr producir energía suficiente para el diario vivir.

Esta tesis tiene como objetivo principal diseñar un mecanismo de multiplicación de revoluciones para una pico hidroeléctrica de 2 KW, con el fin de reducir la

contaminación ambiental generada por energías no renovables y ayudar a los sectores estratégicos a obtener energía eléctrica.

Esto **beneficiara** al país con generación de energía limpia, al igual que a las personas que tengan cerca un afluente de agua capaz de generar parámetros similares que necesita este sistema, para lograr su funcionamiento adecuado y dejar a un lado a los generadores a combustión.

La caja multiplicadora es **factible** gracias a las investigaciones anteriores, caracterizando factores importantes para el desarrollo de este, y gracias a la ayuda del centro de investigaciones de la Universidad Tecnológica Indoamérica.

Objetivos.

Objetivo general:

 Optimizar el proceso de generación de energía renovable por medio de una caja multiplicadora.

Objetivos Específicos:

- Caracterizar el recurso hidráulico para el proceso de generación de energía eléctrica.
- Diseñar un mecanismo de multiplicación para el sistema de generación de energía.
- Evaluar por medio de simulación la caja multiplicadora diseñada para el sistema de generación.

CAPITULO II

INGENIERÍA DEL PROYECTO

Diagnóstico Actual:

En la provincia de Tungurahua existe un canal de riego localizado en el sector de chiquihurco, denominado Ambato – Huachi – Pelileo el cual se analizó la posibilidad de instalar un sistema de energía renovable, para esto se realizó un estudio previo del recurso hidráulico del canal.

La mini – Turbina Michell – Banki se diseñó teniendo en cuenta los datos obtenidos del canal de riego, por lo tanto, se tiene parámetros de funcionamiento explicados en la Tabla 1.

El generador síncrono se realizó dos modelos y para obtener mayor eficiencia se decidió diseñar un sistema de multiplicación, por ende, este sistema tendrá mayor eficiencia en su funcionamiento.

La energía eléctrica producida por este sistema se podrá utilizar para iluminar el canal de riego o para diferentes tipos de sistemas eléctricos, por lo cual, se conseguirá ayudar a estos sectores vulnerables del país.

El canal de riego nos arrojado los siguientes parámetros para los diferentes óvalos:

Secciones 1-6							
Características Hidráulicas	Sección 1	Sección 2	Sección 3	Sección 4	Sección 5	Sección 6	
Caudal (m ³ /s)	1,08	1,29	1,35	1,1	1,25	1,13	
Altura del calado (m)	0,97	1,06	0,96	0,89	0,83	0,76	
Coeficiente Manning	0,013	0,015	0,013	0,013	0,02	0,025	
Izquierda							
Coeficiente Manning	0,02	0,021	0,017	0,03	0,035	0,038	
Central							
Coeficiente Manning	0,013	0,015	0,013	0,013	0,02	0,025	
Derecho							
Nivel de Agua (m)	0,96	1,06	0,98	0,89	0,84	0,76	
Calado Crítico (m)	0,45	0,48	0,48	0,46	0,47	0,45	
Línea de Energía (m)	1	1,09	1,02	0,93	0,89	0,82	
Velocidad Total (m/s)	0,74	0,72	0,82	0,88	0,98	1	
Número de Froude	0,28	0,26	0,31	0,32	0,38	0,41	
Fuente: (IHOSELIN BUÑAY 2018)							

Tabla 1. Características de la Modelación de las Secciones Transversales del canal de riego

Fuente: (JHOSELIN BUNAY, 2018)

En la imagen 1 se muestra las líneas del nivel de agua, energía, con sus medidas respectivas; estas cambian según la sección del canal (ver anexo 15 - 20).

Este sistema de energías renovables utilizara una mini turbina previamente diseñada en investigaciones previas, de esta manera nos arroja los siguientes parámetros:

Imagen 2: Ficha Técnica de la mini – turbina Michell Banki. Fuente: (Lenin Ibañez, 2019)

En la imagen 2, se muestra las características de la mini turbina Michell – Banki previamente diseñada en estudios anteriores.

Existen dos tipos de generadores que se pueden utilizar, ya que se están realizando la investigación de cada uno de ellos.

Área de estudio.

El área de estudio de la propuesta metodológica es:

Dominio:	Diseño y Caracterización.
Línea de investigación:	Diseño, realización y caracterización de sistemas inteligentes, automáticos, semiautomáticos o manuales.
Campo:	Ingeniería Industrial
Área:	Gestión de Proyectos
Aspectos:	Diseño y optimización de sistemas de energías renovables.
Descripción:	Los sistemas que se toman en cuenta para esta línea de investigación incluyen todo sistema mecánico, electromecánico, secuencial, semiautomático, automático o inteligente que tenga componentes mecánicos, electrónicos o informáticos (al menos de uno de los tipos). Así, se consideran sistemas físicos o virtuales (software) para cualquier plataforma o estructura. El enfoque global de esta línea consiste en tomar en cuenta las necesidades reales identificadas en la sociedad, con miras a proponer soluciones innovadoras con un alto componente tecnológico y adaptado a la realidad del campo de utilización. Con este fin, la línea incluye todas las metodologías y campos de investigación necesarios para generar sistemas inteligentes o interactivos innovadores.

Período de análisis:

Enero del 2020 – Junio del 2020

Modelo operativo:

Numer o de tarea	Nombre de tarea	Duració n	Comienzo	Fin	Predecesoras
1.1	Caracterización de los parámetros del canal	20 días	vie 22/11/19	jue 19/12/19	
1.2	Caracterización de los parámetros de la mini turbina	18 días	vie 20/12/19	mar 14/1/20	1
2.1	Identificar los sistemas de transmisión	26 días	mié 15/1/20	mié 19/2/20	1;2
2.2	Desarrollo de los cálculos para la caja multiplicadora	20 días	jue 20/2/20	mié 18/3/20	1;2;3
2.3	Diseño de la caja multiplicadora	35 días	jue 19/3/20	mié 6/5/20	1;2;3;4
3	Simulación de la caja multiplicadora	28 días	jue 7/5/20	lun 15/6/20	1;2;3;4;5

 Tabla 2. Actividades para Realizarse en la Investigación.

Fuente: (Mullo P, 2020)

Gráfico 1: Diagrama de Red de las Actividades Expuestas Fuente: (Mullo P, 2020)

En el gráfico 1, se muestra un diagrama de red de las actividades a realizar en esta investigación.

Gráfico 2: Actividades a Realizarse en el Modelo Operativo Fuente: (Mullo P, 2020)

En el gráfico 2, se caracteriza cada uno de los pasos realizados para la elaboración de esta investigación.

Desarrollo del modelo operativo:

1. Caracterización de los parámetros del canal.

Para poder caracterizar los parámetros del canal de riego se revisará la investigación previamente realizada del estudio del canal, por tanto, identificaremos los principales óvalos en los cuales se obtuvo datos como caudal, velocidad del agua, dimensiones del canal, etc.

Con estos datos obtenidos de la investigación anterior, nos arrojara resultados para poder seguir desarrollando las siguientes actividades planificadas en este proyecto de investigación.

2. Caracterización de los parámetros de la mini turbina

Los parámetros de la mini – turbina, se caracterizarán realizando una revisión de la investigación previamente elaborada, consecuentemente se logrará obtener ya datos relevantes que serán utilizados en los cálculos futuros de la caja multiplicadora.

3. Caracterización de los parámetros de los generadores.

La caracterización de los generadores se realizará de los dos modelos existentes de generadores para esta investigación, para después interpretar cuál de estos sería el más adecuado en el funcionamiento óptimo de este sistema.

4. Identificar los sistemas de transmisión.

Una vez teniendo los datos necesarios de entrada del canal como de la mini – turbina, se realizará una investigación bibliográfica de los sistemas de transmisiones existentes, lo que significa que se logrará identificar cuál de estos es el más idóneo para el funcionamiento correcto del sistema de energía renovable.

5. Desarrollo de los cálculos para la caja multiplicadora

Para proceder con los cálculos se revisará los parámetros obtenidos de las investigaciones pasadas, con esto se comenzará con el desarrollo de los cálculos de la caja multiplicadora, teniendo en cuenta coeficientes y materiales que sean próximos a la realidad de funcionamiento de este sistema de multiplicación.

6. Diseño de la caja multiplicadora

En el diseño de la caja multiplicadora se tomará en cuenta los cálculos obtenidos. En el programa de SolidWorks se ingresará los engranajes de Toolbox, y proceder a realizar el ensamble virtual de cada uno de sus componentes en el programa antes mencionado, es necesario aclarar que para los cálculos se utilizaron medidas inglesas, ya que con estas medidas se trabajó los cálculos.

7. Simulación de la caja multiplicadora

Para esta simulación será importante que el diseño se realice correctamente y poder simular con los factores reales, para saber cuál va a hacer el comportamiento de la caja multiplicadora y si tal vez es necesario generar algún cambio en los cálculos o en el diseño, por lo tanto, de esta manera obtener 600 rpm de salida, y así dar cumpliendo con los datos que necesita el generador síncrono de imanes permanentes, con el fin de implementar el sistema de energía renovable planeado en este canal.

Para la primera simulación de movimiento se utilizará Estudio de movimiento de SolidWorks, para después simular la transmisión y obtener resultados en el programa Gears Simulator, posteriormente se realizará un análisis de mallado, esfuerzos estáticos y dinámicos en el programa de Ansys.

CAPITULO III

PROPUESTA Y RESULTADOS ESPERADOS

El sistema de energía renovable:

Este sistema cuenta con un estudio tanto del canal de riego como del diseño y construcción de la mini – turbina, al igual que del generador; por lo que es necesario caracterizar cada uno de los parámetros más relevantes para el funcionamiento de este sistema que se describe a continuación:

Canal de riego:

El canal de riego recorre Ambato, Cevallos y Pelileo con una extensión total de 27 km, los cuales se dividieron en 7 secciones para el estudio realizado. Este canal es utilizado para abastecer de agua de riego por los sectores en los que circula (JHOSELIN BUÑAY, 2018).

Imagen 3: Secciones del canal de riego. Fuente: (JHOSELIN BUÑAY, 2018)

En la imagen 3, se muestra la extensión del canal que es de 27 km, y que está dividida en 7 secciones para este estudio.

El canal de riego tiene una forma trapezoidal, los tramos analizados están desde la abscisa 5+400 al 8+100, cuenta con una pendiente del tramo de 0.0017 (JHOSELIN BUÑAY, 2018), ver los anexos 21 - 23.

Para continuar con el estudio se realizó la medición de la velocidad media en las secciones antes expuestas, esta medición se realizó con un molinete el cual es un transistor de líquidos serie DMM-4000/PFT. La toma de datos se realizó aproximadamente a cada 500 metros.

Con los datos obtenidos se pudo obtener las curvas de distribución de velocidad, como se muestra en los anexos 15 - 20.

Como resultado se puede decir que la sección 3 en el área verde se alcanza una velocidad desde 1.76 hasta 1.98 m/s, en el cual se podría instalar este sistema de energía renovable.

Se evidencia que en la sección 3 se tiene el mayor caudal de agua de $1.35 \text{ m}^3/\text{s}$.

Al finalizar esta investigación del canal de riego se tiene valores promedios de la velocidad de 0.85 m/s y un caudal de 1.20 m³/s. Con los datos expuesto se puede continuar con la investigación para lo que es la mini turbina.

Caracterización de la Mini turbina Michell – Banki:

Para el estudio de esta mini turbina se hizo un análisis de las existentes y cuáles de estas serían apropiadas para este canal, llegando así a escoger una mini turbina Michell – Banki; al igual que se analizaron tres modelos posibles para el estudio, diseño y fabricación llegando así a tener el siguiente modelo.

Imagen 4: Modelo de la mini turbina Michell – Banki Fuente: (Lenin Ibañez, 2019).

En la imagen 4, se muestra el diseño realizado en SolidWorks de la mini turbina que se utilizará en el sistema de energía renovable.

Se realizó su respectiva modelación matemática de sus componentes para proceder con el diseño, ensamble y fabricación de la mini turbina. Así se pudo obtener los siguientes resultados.

Dimensiones	916.5x726.9x237 mm
Peso	33.35 kg
Revoluciones	110 rpm
Torque	26 N*m
Potencia	31.4 W
Diámetro del Eje	0.019 m
Caudal	0.0936m ³ /s

 Tabla 3: Características de la Mini Turbina Michell – Banki.

Características de la Mini Turbina Michell – Banki.

Fuente: (Lenin Ibañez, 2019)

Cabe recalcar que para los cálculos realizados para la caja multiplicadora se utilizó 100 rpm siendo esta un valor constante en las mediciones de campo.

Generador síncrono de imanes permanentes:

Como se describió anteriormente este sistema cuenta con 2 tipos y para mejorar su funcionalidad se decidió incrementar una caja multiplicadora, para así lograr obtener mayor potencia eléctrica.

En si este es un sistema de energía renovable capaz de funcionar a bajos caudales; con este estudio y otros en el futuro se desea que pueda ser un sistema portable capaz de funcionar en cualquier afluente de agua, sin necesidad de alterar el mismo.

Generador Síncrono de Imanes Permanentes de Flujo Axial.

Parámetro	Símbolo	Valor
Potencia	Po	1.6[Kw]
nominal		
Velocidad	Ν	600[rpm]
nominal		
Pares de polos	Р	12
Bobinas de	n _{Bobina}	9
estator numérico		
Diámetro	D_{el}	215[mm]
exterior		
Diámetro	$\mathbf{D}_{\mathbf{i}}$	35[mm]
interior		
Distancia de la	G	2[m]
brecha de aire		
Giros de bobina	T_{Ph}	241
por fase		
Giros de bobina	Tc_{Ph}	81
por bobina		
Densidad de	\mathbf{B}_{Ag}	0.6[T]
flujo de espacio		
de aire		

Tabla 4. Datos del Generador Síncrono de Imanes Permanentes de Flujo Axial.

Fuente: (Mullo P, 2020).

Generador Síncrono de Imanes Permanentes de Flujo Radial.

Tabla 5. Datos del Generador Síncrono de Imanes Permanentes del Flujo Radial.

Parámetro	Símbolo	Valor
Potencia	Po	2 [Kw]
nominal		

Velocidad	Ν	600[rpm]
nominal		
Pares de polos	Р	12
Bobinas de	n _{Bobina}	18
estator numérico		
Diámetro	D_{el}	138.8[mm]
exterior del rotor		
Diámetro	D_i	222[mm]
exterior del		
estator		
Diámetro	G	140[mm]
interior del		
estator		

Fuente: (Mullo P, 2020)

Sistemas de transmisión de potencia.

En términos técnicos tenemos que un reductor es un multiplicador de forma inversa y de esta manera se puede clasificar como opciones para diseño de un multiplicador de engranes como:

- Engranes rectos: este tipo de engranes tiene una carga nominal de 3.50:1, los engranes rectos producen únicamente cargas radiales, por lo que nos ayuda a simplificar la selección de los rodamientos, esto genera mayor precisión en rodamientos y sellos. La producción de este tipo de engranes es más económica. Generar facilidad para acoplar con motor o eje de impulsión (Robert L. Mott, 2004).
- Engranes helicoidales: este tipo de engranes son prácticas al igual que los engranes rectos. Similar a los engranes rectos para linear con los ejes. En cuanto al tamaño podría ser menos, sin embrago este crearía cargas axiales de empuje, donde se debería acomodar en los rodamientos. Su costo es mayor (Robert L. Mott, 2004).
- Engranes cónicos: este tipo de engranes producen un cambio en la dirección en ángulo recto. Son más difíciles de diseñar y armar (Robert L. Mott, 2004).
- Transmisión de tornillo sinfín y corona: Al igual que los engranes cónicos este produce un cambio de dirección en ángulo recto. El calor generado puede causar problemas, con 25 HP y menora la eficiencia (Robert L. Mott, 2004).

Parámetros.	Engranes	Engranes	Engranes	Transmisión
	Rectos	Helicoidales.	Cónicos	de Tornillo
				sin fin y
				corona.
Cargas.	Radiales	Axiales y	Axial, Radial	Axial, Radial
		Radiales	y Normal	y Normal
Costo de	Medio	Alto	Alto	Alto
fabricación.				
Costo de	Medio	Alto	Alto	Alto
compra por				
catálogo.				
Dificultad en	Media	Media	Alta	Alta
su resolución				
matemática.				
Facilidad de	Fácil	Fácil	Medio	Medio
acople con el				
eje de				
impulsión				

Tabla 6: Comparación entre los tipos de engranes utilizados en las transmisiones.

Fuente: (Robert L. Mott, 2004)

Presentación de la propuesta:

Diseño matemático de un mecanismo de multiplicación.

Para este sistema al observar la tabla 6 se decidió realizarlo con engranes rectos, ya que son menos costosos, son eficientes, tienen una relación razonable y se pueden alinear con el eje de impulsión o motor.

Desarrollo numérico:

Para este desarrollo se tomó en cuenta las fórmulas ya descritas en el diseño en ingeniería mecánica Shigley (Douglas y Monel, 2008).

Para el cálculo de los engranes los nombres de los símbolos utilizados se encuentra en el anexo 40.

Gráfico 3: Diagrama Ilustrativo para el Análisis de los Engranes. Fuente: (Mullo P, 2020)

En el gráfico 3, se muestra los componentes de la caja multiplicador, también su simbología con la que se representara en toda esta investigación.

$$w_i = 100 \, rpm$$

 $620 \, rpm \, < \, w_0 < 650 \, rpm \cong 635 \, rpm$

Valor del tren de engranes

$e = \frac{w_5}{w_2}$	Ecuación 1
$e = \frac{635}{100} = 6.35$	
$e = \frac{N_2}{N_3} \frac{N_4}{N_5}$	Ecuación 2
$\frac{N_2}{N_3} = \frac{N_4}{N_5} = \sqrt{6.35}$	
$\frac{N_2}{N_3} = \frac{N_4}{N_5} = 2.5199$	
$N_3 = N_5 = 16 \ dientes$	
$\frac{N_2}{N_3} = 2.5199$	
$\frac{N_2}{16} = 2.5199$	
$N_2 = 40.32$	
$N_2 = N_4 = 40 \ dientes$	

$$w_{5} = \frac{40}{16} * \frac{40}{16} * 100 \ rpm$$

$$w_{5} = 625 \ rpm \ aceptable$$

$$e = \frac{40}{16} * \frac{40}{16} = 6.25$$

$$w_{3} = w_{4} = \frac{40}{16} * 100 = 250 \ rpm$$

Pares de torsión en cada segmento.

Ecuación 3

En el gráfico 4, se muestra el engrane N2, sus variables y valores que genera este.

$$H = T_2 w_2 = T_5 w_5$$

$$T_2 = \frac{H}{w_2}$$

$$T_2 = \frac{31.4 w}{100 rpm} * \left(\frac{0.73756 \, lbf * ft/s}{1 w}\right) * \left(\frac{1 \, rev}{2\pi \, rad}\right) * \left(\frac{60 \, s}{1 \, min}\right)$$

$$T_2 = 221.1558 \, lbf * ft$$

$$T_3 = T_2 \frac{w_2}{w_3}$$

$$T_3 = 221.1558 \, lbf * ft \frac{100 \, rpm}{250 \, rpm}$$

$$T_3 = 88.4623 \, lbf * ft$$

$$T_5 = T_2 \frac{w_2}{w_5}$$

$$T_5 = 221.1558 \, lbf * ft \frac{100 \, rpm}{625 \, rpm}$$

$$T_5 = 35.384 \, lbf * ft$$

Paso diametral.

$$P_{min} = \frac{N_3 + \frac{N_2}{2} + \frac{N_5}{2} + 2}{Y - holguras - espesores de la pared}$$

$$P_{min} = \frac{16 + \frac{40}{2} + \frac{16}{2} + 2}{22 - 1.5}$$

$$P_{min} = 2.2439 \ dientes/in$$

$$P = 2.25 \ dientes/in \approx 2.5 \ dientes/in$$

$$d_2 = d_4 = \frac{N_2}{P} = \frac{40}{2.5} = 16 \ in$$

$$d_3 = d_5 = \frac{N_3}{P} = \frac{16}{2.5} = 6.4 \ in$$
Velocidad de la línea de paso.
$$V_{23} = \frac{\pi * 4_2 * w_2}{12}$$

$$V_{23} = 418.879 \ ft/min$$

$$V_{45} = \frac{\pi * 6.4 \ in * 625 \ rpm}{12}$$

$$V_{45} = 1047.1975 \ ft/min$$
Cargas Transmitidas
$$W_{23}^t = 33000 \ \frac{H}{V_{23}}$$

$$31.4 * \left(\frac{0.00134Hp}{1w}\right) = 0.0421$$

$$W_{23}^t = 3.3167 \ lbf$$

$$W_{45}^t = 33000 \ \frac{H}{V_{45}}$$

Ecuación 4

Ecuación 5

$$\begin{split} & W_{45}^{I} = 33000 \ \frac{0.0421 \ Hp}{1047.1975 \ ft/min} \\ & W_{45}^{I} = 1.3266 \ lbf \\ & \text{Factor Geométrico.} \\ & I = \frac{\cos 20 \sin 20}{2 \cdot 1} \cdot \frac{m_{G}}{1 + 1} \\ & I = 0.08034 \\ & \text{Factor Dinámico Kv.} \\ & K_{v} = \left(\frac{4 + \sqrt{v_{23}}}{A}\right)^{B} \\ & Ecuación 8 \\ & Q_{v} = 7 \\ & A = 50 + 56 * (1 - B) \\ & Ecuación 9 \\ & B = 0.25 * (12 - Q_{v})^{2/3} \\ & B = 0.731 \\ & A = 50 + 56 * (1 - 0.731) \\ & A = 65.064 \\ & K_{v} = \left(\frac{65.064 + \sqrt{418.789 \ ft/min}}{65.064}\right)^{0.731} \\ & K_{v} = 1.2213 \ ft/min \\ & \text{Ancho de cara.} \\ & F = 3 - 5\left(\frac{\pi}{p}\right) \\ & Ecuación 10 \\ & F = 3\left(\frac{\pi}{2.5 \ in}\right) \\ & F = 3.76 \cong 3 \\ & \text{Factor de la distribución de la carga.} \\ & K_{m} = C_{mf} = 1 + C_{mc} \left(C_{pf} * C_{pm} + C_{ma} * C_{e}\right) \\ & Ecuación 12 \\ \end{split}$$

$$C_{pf} = \frac{F}{10*d} - 0.0375 + 0.0125 * F \quad 1 < F \le 17in$$
 Ecuación 13

$$C_{pf} = \frac{3 \text{ in}}{10 * 16 \text{ in}} - 0.0375 + 0.0125 * 3 \text{ in}$$

$$C_{pf} = 0.01875$$

$$C_{mc} = 1 \text{ para dientes sin coronar}$$

$$Ecuación 14$$

$$C_{pm} = 1 \text{ para piñon montado separado}$$

$$Ecuación 15$$

$$C_{max} = A + B * E + (C * E)^2$$

$$Ecuación 16$$

$$C_{ma} = A + B * F + (C * F)^2$$
 Ecuación 16

Para los valores de A, B, C, se escogió unidades comerciales cerradas; estos valores se consideraron para todos los engranes. Revisar anexo 1.

$$C_{ma} = 0.127 + 0.0158 * 3 + (-0.930 * 10^{-4} * 3)^{2}$$

$$C_{ma} = 0.1744$$

$$C_{e} = 1 \text{ para todas las otras condiciones.}$$

$$Ecuación 17$$

$$K_{m} = C_{mf} = 1 + 1(0.01875 * 1 + 0.1744 * 1)$$

$$K_{m} = C_{mf} = 1.1931$$

Este valor se utilizará para el engrane 2 y 4 ya que son del mismo diámetro.

Para el valor de Cp se escogió acero obteniendo un valor de 2300 para las diferentes ecuaciones restantes en todos los engranes, ya que este valor representa el coeficiente elástico del acero. Revisar anexo 2.

$$K_{0} = K_{s} = C_{f} = 1$$

$$\sigma_{c} = C_{p} * \sqrt{W * K_{0} * K_{v} * K_{s} * \frac{K_{m}}{d_{P} * F} * \frac{C_{f}}{I}}$$
Ecuación 18
$$\sigma_{c} = 2300 * \sqrt{3.3167 * 1 * 1.2213 * 1 * \frac{1.1931}{16 * 3} * \frac{1}{0.08034}}$$

$$\sigma_{c} = 2574.8029 PSI$$
Número do ciclos pero la vido conocificado

Número de ciclos para la vida especificada.

$$L_{2} = (12000 h) * \left(\frac{60 \min}{1 h}\right) * \left(\frac{100 rev}{\min}\right)$$
$$L_{2} = 7.2 * 10^{6} rev$$

Desgaste del engrane 2.

Al analizar el anexo 3 se evidencia que el valor de Zn es igual a 1.05.

Ecuación 19

$$\sigma_{c \ perm} = \frac{S_C}{S_H} * \frac{Z_n C_H}{K_T K_R}$$

$$K_R = K_T = C_H = 1$$

$$\sigma_{c \ perm} = \frac{S_C}{S_H} * \frac{Z_n C_H}{K_T K_R}$$

$$\sigma_{c \ perm} = \frac{S_C * Z_n}{S_H}$$

$$S_C = \frac{S_H * \sigma_{c \ perm}}{Z_N}$$

$$S_C = \frac{2574.8029 \ PSI * 2}{1.05}$$

 $S_c = 4904.3865 \, PSI \cong Endurecido \, completamente \, grado \, 1 \, \text{Revisar anexo} \, 38 - 39.$

$$S_{C} = 322 HB + 29100 PSI$$

$$S_{C} = 93500 PSI$$

$$n_{C} = \frac{\sigma_{C} perm}{\sigma_{C}} = \frac{S_{C} * Z_{N}}{\sigma_{C}}$$

$$n_{C} = \frac{93500 PSI * 1.05}{2574.8029 PSI}$$

$$n_{C} = 38.1291$$

Flexión del engrane 2.

Al ser un engrane de 40 dientes se tiene un valor de J = 0.38. Revisar anexo 4.

$$K_{B} = 1$$

$$K_{0} = K_{s} = C_{f} = 1$$

$$\sigma = W * K_{v} * K_{0} * K_{s} * \frac{P_{d}}{F} * \frac{K_{m} * K_{B}}{J}$$
Ecuación 22
$$\sigma = 3.3167 * 1 * 1.2213 * 1 * \frac{2.5}{3} * \frac{1.1931 * 1}{0.38}$$

$$\sigma = 10.5984 PSI$$
De elemente de la 2 monthe de la 3 monthe de la 3 monthe de la 4 monthe d

Por el valor de L2 se puede identificar que YN equivale a 1.2. Revisar anexo 5.

$$\begin{split} S_t &= 77.3 \ HB + 12800 \ PSI & Ecuación \ 23 \\ S_t &= 28260 \ PSI \\ \sigma_{perm} &= \frac{S_t}{S_F} * \frac{Y_N}{K_T * K_R} & Ecuación \ 24 \end{split}$$

$$\sigma_{perm} = S_t * Y_N$$

$$\sigma_{perm} = 28260 PSI * 1.2$$

$$\sigma_{perm} = 33912 PSI$$

$$n = \frac{\sigma_{c \ perm}}{\sigma_c}$$

$$n = \frac{33912PSI}{10.5984 \ PSI}$$

$$n = 3199.7282$$

Desgaste engrane 3.

Al analizar el anexo 4, con el número de dientes del engrane que es 16 se obtiene un valor de J = 0.27

 $K_B = 1$

El procedimiento para este engrane es el mismo que el anterior únicamente se calcula el valor de Cpf y Km ya que este diámetro es diferente.

$$C_{pf} = \frac{3 in}{10 * 6.4 in} - 0.0375 + 0.0125 * 3 in$$

$$C_{pf} = 0.4687$$

$$K_m = C_{mf} = 1 + 1(0.4687 * 1 + 0.1744 * 1)$$

$$K_m = C_{mf} = 1.6431$$

Este valor se utilizará para el engrane 3 y 5.

Número de ciclos para la vida especificada.

$$L_{3} = (12000 h) * \left(\frac{60 \min}{1 h}\right) * \left(\frac{250 rev}{\min}\right)$$
$$L_{3} = 1.8 * 10^{8} rev$$

Por el anexo 3 se obtiene un valor de $Z_N = 0.9$

Por el anexo 5 se obtiene un valor de $Y_N = 0.9$

$$\sigma_c = 2300 * \sqrt{3.3167 * 1 * 1.2213 * 1 * \frac{1.6431}{6.4 * 3} * \frac{1}{0.08034}}$$

$$\sigma_c = 4777.5757 PSI$$

$$S_c = \frac{4777.5757 PSI * 2}{0.9}$$

$$\begin{split} S_{c} &= 10616.8349 \, PSI \, \cong Endurecido \ completamente \ grado \ 1 \\ S_{c} &= 322 \ HB + 29100 \ PSI \\ S_{c} &= 93500 \ PSI \\ n_{c} &= 93500 \ PSI \times 0.9 \\ n_{c} &= 8.8067 \\ Flexión \ engrane \ 3. \\ K_{0} &= K_{s} &= C_{f} = 1 \\ \sigma &= 3.3167 \times 1 \times 1.2213 \times 1 \times \frac{2.5}{3} \times \frac{1.6431 \times 1}{0.27} \\ \sigma &= 20.5422 \ PSI \\ S_{t} &= 28260 \ PSI \\ S_{t} &= 28260 \ PSI \times 0.9 \\ \sigma_{perm} &= 25434 \ PSI \\ n &= \frac{25434PSI}{20.5422 \ PSI} \\ n &= 1238.1341 \end{split}$$

Engrane 4.

Para este engrane es necesario volver a calcular otros valores ya que tanto su velocidad en la línea de paso y la carga trasmitida son diferentes.

Por el anexo 3 se obtiene un valor de $Z_N = 0.9$ Por el anexo 5 se obtiene un valor de $Y_N = 0.9$ Por el anexo 4 se obtiene un valor de J = 0.38 $Q_v = 7$ $B = 0.25 * (12 - 0.7)^{2/3}$ B = 0.731A = 50 + 56 * (1 - 0.731)A = 65.064

$$K_{v} = \left(\frac{65.064 + \sqrt{1047.1975ft/min}}{65.064}\right)^{0.731}$$

 $K_v = 1.3432$

Desgaste engrane 4.

$$\begin{aligned} \sigma_c &= 2300 * \sqrt{1.3266 * 1 * 1.3234 * 1 * \frac{1.1931}{16 * 3} * \frac{1}{0.08034}} \\ \sigma_c &= 1695.0998 PSI \\ L_4 &= (12000 h) * \left(\frac{60 \min}{1 h}\right) * \left(\frac{250 rev}{\min}\right) \\ L_4 &= 1.8 * 10^8 rev \\ S_c &= \frac{1695.0998 PSI * 2}{0.9} \\ S_c &= 3766.8885PSI \cong Endurecido \ completamente \ grado 1 \\ S_c &= 93500 \ PSI \\ n_c &= \frac{93500 \ PSI * 0.9}{1695.0998 \ PSI} \\ n_c &= 49.6430 \\ Flexión \ engrane \ 4. \\ K_0 &= K_s = C_f = 1 \\ \sigma &= 1.3266 * 1 * 1.3432 * 1 * \frac{2.5}{3} * \frac{1.1931 * 1}{0.38} \\ \sigma &= 4.6622 \ PSI \\ S_t &= 28260 \ PSI \\ s_t &= 28260 \ PSI * 0.9 \\ \sigma_{perm} &= 25434 \ PSI \\ n &= \frac{25434 \ PSI}{4.6622 \ PSI} \\ n &= \frac{25434 \ PSI}{4.6622 \ PSI} \\ n &= 5455.3644 \end{aligned}$$

Desgaste engrane 5.

Por el anexo 3 se obtiene un valor de $Z_N = 0.9$ Por el anexo 5 se obtiene un valor de $Y_N = 0.9$ Por el anexo 4 se obtiene un valor de J = 0.27

$$L_{5} = (12000 h) * \left(\frac{60 \text{ min}}{1 \text{ h}}\right) * \left(\frac{625 \text{ rev}}{\text{min}}\right)$$

$$L_{5} = 4.5 * 10^{8} \text{ rev}$$

$$\sigma_{c} = 2300 * \sqrt{1.3266 * 1 * 1.3432 * 1 * \frac{1.6431}{6.4 * 3} * \frac{1}{0.08034}}$$

$$\sigma_{c} = 3168.7183 \text{ PSI}$$

$$S_{c} = \frac{3168.7183 \text{ PSI * 2}}{0.9}$$

$$S_{c} = 7041.5964 \text{ PSI} \cong \text{Endurecido completamente grado 1}$$

$$S_{c} = 93500 \text{ PSI}$$

$$n_{c} = \frac{93500 \text{ PSI * 0.9}}{3168.7183 \text{ PSI}}$$

$$n_{c} = 26.5564$$
Flexión engrane 5.

$$\sigma = 1.3266 * 1 * 1.3432 * 1 * \frac{2.5}{3} * \frac{1.6431 * 1}{0.27}$$

$$\sigma = 9.0364 \text{ PSI}$$

$$S_{t} = 28260 \text{ PSI}$$

$$\sigma_{perm} = S_{t} * Y_{N}$$

$$\sigma_{perm} = 28260 \text{ PSI * 0.9}$$

$$\sigma_{perm} = 25434 \text{ PSI}$$

$$n = \frac{25434 \text{ PSI}}{9.0364 \text{ PSI}}$$

$$n = 2814.6164$$

Resumen:

Todos los engranes utilizaran un $P = 2.25 \ dientes/in$

En los engrane se utilizará un material de acero completamente endurecido de grado 1 ya que el esfuerzo a que se sometía esta caja no es elevado. En cuanto a las medidas de los engranes se descomponen de la siguiente manera:

Tabla 7. Cuadro de resumen

Engrane	Diámetro (dp)	Ancho de cara	Paso Diametral	# Dientes
Engrane 2	16 in	3 in	2.5 dien/in	40
Engrane 3	6.4 in	3 in	2.5 dien/in	16
Engrane 4	16 in	3 in	2.5 dien/in	40
Engrane 5	6.4 in	3 in	2.5 dien/in	16

Fuente: (Mullo P, 2020)

Para seleccionar el ancho de la cara adecuado se verifico en catálogos de engranes donde se encontró un ancho de 3 in que satisfacía nuestras necesidades (Cotransa 2012).

Tabla 8. *Resistencia a la Fatiga Superficial Calculada, Seleccionada y Coeficiente de Seguridad.*

Engrane	Resistencia a la fatiga superficial AGMA calculada (Sc)	Resistencia a la fatiga superficial AGMA seleccionada (Sc)	Coeficiente de seguridad en desgaste	Coeficiente de seguridad en flexión
Engrane 2	4904.3865 PSI	93500 PSI	38.1291	3199.7282
Engrane 3	10616.8349 PSI	93500 PSI	8.8067	1238.1341
Engrane 4	3766.8885 PSI	93500 PSI	49.6430	5455.3644
Engrane 5	7041.5964 PSI	93500 PSI	26.5564	2814.6164

Fuente: (Mullo P, 2020)

Al comparar los valores arrojados en los cálculos de la fatiga superficial calculada y seleccionada se observa valores bajos en la calculada y alta en la seleccionada pese a que los valores del material seleccionado (acero endurecido completamente grado 1) son bajos y es por esto que los coeficientes de seguridad calculados son altos.

Una vez definido los valores necesarios de los engranes, se continua con el diseño de los ejes o flechas:

Para el diseño de las flechas se tomaron los tamaños que aconseja el libro de diseño en ingeniería mecánica que es una pulgada para cojinetes y 0.25 in para anillos de retención y como en cálculos anteriores se obtuvo el valor del ancho de cada engrane, se pudo tener el largo total de cada flecha.

Flecha 1.

Para el cálculo de la flecha el nombre de los símbolos utilizados se encuentra en el anexo 41.

$$W_{23}^r = 1.2071 \ lbf$$

 $W_{23}^t = 3.3167 \ lbf$

Para el cálculo de los esfuerzos y reacciones dentro de la flecha se utilizó el software de MDSolids.

Fuente: (Mullo P, 2020)

En el gráfico 5, se muestra un diagrama de fuerza aplicada en el eje 1 en el sentido X - Y, sacado del programa MDSolids.

$$\uparrow^{+} \sum Fy = 0$$

$$R_{Ay} + R_{By} - W_{23}^{r} = 0$$

$$R_{Ay} = W_{23}^{r} - R_{By}$$

$$R_{Ay} = 1.2071 \ lbf - 0.6323 \ lbf$$

$$R_{Ay} = 0.5748 \ lbf$$

$$\swarrow^{+} \sum Fz = 0$$

$$R_{Az} + R_{Bz} - W_{23}^{t} = 0$$

$$R_{Az} = W_{23}^{t} - R_{Bz}$$

$$R_{Az} = 3.3167 \ lbf - 1.7373 \ lbf$$

$$R_{Az} = 1.5793 \ lbf$$

$$\mho^{+} \sum M_{Ay} = 0$$

 $R_{By} \cdot 5.25 \ in - W_{23}^{r} \cdot 2.75 \ in = 0$

Fuente: (Mullo P, 2020)

Gráfico 7: Diagrama Ilustrativo para el Análisis de Toque en las Flechas. Fuente: (Mullo P, 2020)

En el gráfico 7, se muestra el análisis de torque en la flecha, el cual es similar para las diferentes flechas.

$$T = W_{23}^t (d_{3/2})$$

Gráfico 8: Diagrama de las Áreas Generadas por la fuerza y reacciones en el sentido x-y. *Fuente:* (Mullo P, 2020)

En el gráfico 8, se muestra las áreas generadas por la fuerza y las reacciones del eje 1 en el sentido X - Y, sacado del programa MDSolids.

 $A_1 = 0.5748 \ lbf \ \cdot 2.75$ $A_1 = 1.5807 \ lbf \ \cdot \ in$

$$A_2 = -0.6323 \ lbf \cdot 2.5$$

 $A_2 = -1.5807 \ lbf \cdot in$

En el gráfico 9, se muestra el momento flector generado por la fuerza y las reacciones del eje 1 en el sentido X - Y, sacado del programa MDSolids.

$$M_0 = 0$$

 $M_1 = A_1 + M_0$

En el gráfico 10, se muestra las áreas generadas por la fuerza y las reacciones del eje 1 en el sentido Y – Z, sacado del programa MDSolids.

> $A_1 = -1.5793 \ lbf \cdot 2.75 \ in$ $A_1 = -4.343 \ lbf \cdot in$

 $A_2 = 1.7374 \ lbf \ \cdot 2.5 \ in$

En el gráfico 11, se muestra el momento flector generado por la fuerza y las reacciones del eje 1 en el sentido Y – Z, sacado del programa MDSolids.

$$M_0 = 0$$
$$M_1 = A_1 + M_0$$
$$M_1 = -4.343 \ lbf \cdot in$$

$$M_{2} = A_{2} + M_{1}$$

$$M_{2} = 4.343 \ lbf \cdot in - 4.343 \ lbf \cdot in$$

$$M_{2} = 0$$

$$M = \sqrt{4.343^{2} + 1.5807^{2}}$$

$$M = 4.6217 \ lbf \cdot in$$

Anexo 6: Filete de hombro: bien redondeado; este valor se utilizará en todas las flechas calculadas. $\left(\frac{r}{d} = 0.1\right)$

$$k_t = 1.7$$
$$k_{ts} = 1.5$$
$$k_f = k_t$$
$$k_{fs} = k_{ts}$$

Para la fabricación del eje se escogió un acero común conocido como AISI 1020 cuyo valor se encuentra en el anexo 7.

$$S_{ut} = 68 KPSI$$

Anexo 8: Maquinado o laminado en frío (a = 2.7 y b = -0.265)

$$k_{a} = a \cdot S_{ut}^{b}$$

$$k_{a} = 2.7 \cdot (68)^{-0.265}$$

$$k_{a} = 0.883 \text{ KPSI}$$

$$k_{b} = 0.9$$

$$k_{c} = k_{d} = k_{e} = 1$$

$$k_{f} = 0.24 - 0.9 \approx 0.5$$

$$S_{e} = k_{a} \cdot k_{b} \cdot k_{c} \cdot k_{d} \cdot k_{e} \cdot k_{f} \cdot S_{ut}$$
Ecuación 26

$$S_e = 0.883 \cdot 0.9 \cdot 0.5 \cdot 68$$

 $S_e = 27.019 \, KPSI$

$$d = \left\{ \frac{16n}{\pi} \left(\frac{2k_f \cdot M_a}{s_e} + \frac{\left[\frac{3(k_{fs} \cdot T_m)^2}{s_{ut}} \right]^{1/2}}{s_{ut}} \right) \right\}^{1/3}$$

$$d = \left\{ \frac{16 \cdot 2}{\pi} \left(\frac{2 \cdot 1.7 \cdot 4.6217 \ lbf \cdot in}{27019} + \frac{\left[3(1.5 \cdot 26.5336)^2 \right]^{1/2}}{68000} \right) \right\}^{1/3}$$

$$d = 0.2533 \cong 0.3 \ in$$

$$d = 0.3$$

$$D/_d = 1.2$$

$$D = 1.2 \cdot 0.3$$

$$D = 0.36 \cong 0.4 \ in$$

$$\frac{D}{d} = \frac{0.4 \ in}{0.3 \ in}$$

$$\frac{D}{d} = 1.33$$

$$r = \frac{d}{10}$$

$$r = 0.04 \ in$$

$$\frac{r}{d} = \frac{0.04 \text{ in}}{0.4 \text{ in}}$$
$$\frac{r}{d} = 0.1$$

Para el valor de k_t se obtuvo del análisis del anexo 9; al igual que el valor de q del anexo 10.

$$k_t = 1.45$$

 $q = 0.82$
 $k_f = 1 + q(k_t - 1)$ Ecuación 28

$$k_f = 1 + 0.82(1.45 - 1)$$

 $k_f = 1.369$

Para el valor de k_t se obtuvo del análisis del anexo 11; al igual que el valor de q del anexo 12.

$$k_{ts} = 1.4$$

 $q_s = 0.95$

$$k_{fs} = 1 + q_s(k_{ts} - 1)$$

$$k_{fs} = 1 + 0.95(1.8 - 1)$$

$$k_{fs} = 1.38$$

$$0.11 \le d \le 2 \text{ in}$$

$$k_b = 0.879 \cdot d^{-0.107}$$

$$k_b = 0.879 \cdot (0.4)^{-0.107}$$

$$k_b = 0.9695$$

$$\begin{aligned} k_{f} &= 0.24 - 0.9 \\ k_{c} &= k_{d} = k_{e} = 1 \\ S_{e} &= k_{a} \cdot k_{b} \cdot k_{e} \cdot k_{d} \cdot k_{e} \cdot k_{f} \cdot S_{u} \\ S_{e} &= 0.883 \cdot 0.9695 \cdot 0.5 \cdot 68 \\ S_{e} &= 29.107 \ KPSI \\ \vartheta'_{a} &= \frac{32 \cdot k_{f} \cdot M_{a}}{\pi \cdot d^{3}} \\ \vartheta'_{a} &= \frac{32 \cdot 1.369 \cdot 4.6217}{\pi \cdot 0.4^{3}} \\ \vartheta'_{a} &= 1006.9904 \ PSI \\ \vartheta'_{m} &= \left[3 \left(\frac{16 \cdot k_{fs} \cdot T_{m}}{\pi \cdot d^{3}}\right)^{2}\right]^{1/2} \\ \vartheta'_{m} &= \left[3 \left(\frac{16 \cdot 1.38 \cdot 26.5336}{\pi \cdot 0.4^{3}}\right)^{2}\right]^{1/2} \\ \vartheta'_{m} &= 5046.9154 \ PSI \end{aligned}$$

Ecuación 29

Ecuación 30

Ecuación 31

Criterio Goodman

$$\frac{1}{n_f} = \frac{\vartheta'_a}{S_e} + \frac{\vartheta'_m}{S_{ut}}$$
$$\frac{1}{n_f} = \frac{1006.9904}{29107} + \frac{5046.9154}{68000}$$
$$\frac{1}{n_f} = 0.1081$$
$$n_f = 9.1898$$

Para el valor de Sy se obtuvo del anexo 7.

$$S_{y} = 57000$$

$$n_{y} = \frac{S_{y}}{\theta'_{a} + \theta'_{m}}$$
Ecuación 34
$$n_{y} = \frac{57000}{1006.9904 + 5046.9154}$$

$$n_{y} = 9.4154$$
Anillo de retención ER0031. Ver anexo 13.
 $a = grosor = 0.025$
 $r = 0.01 in$
 $\phi = 0.281 in$
 $t = profundidad = 0.026$
 $\frac{r}{t} = \frac{0.01 in}{0.026 in}$
 $\frac{r}{t} = 0.3846$
 $\frac{a}{t} = \frac{0.025 in}{0.026 in}$

Para el valor de Kt se obtuvo del anexo 14, al igual que el valor de q del anexo 10.

$$k_t = 4.9$$
$$q = 0.9$$

 $\frac{a}{t} = 0.9615$

 $k_f = 1 + 0.65(4.9 - 1)$

$$\vartheta'_{a} = \frac{32 \cdot 4.51 \cdot 4.6217}{\pi \cdot 0.4^{3}}$$

 $\vartheta'_{a} = 3317.4044 \, PSI$

 $k_{f} = 4.51$

$$n_f = \frac{s_e}{\vartheta'_a}$$
$$n_f = \frac{29.107}{3317.4044 PSI}$$
$$n_f = 8.7740$$

$$D_3 = 0.4 in$$

 $D_1 = D_6 = 0.28 in$
 $D_2 = 0.33 in$
 $D_5 = 0.48 in$

Cojinetes: Cojinete A

$$L_c = 1200h \cdot \frac{60 \min}{1 h} \cdot \frac{100 rev}{\min}$$
$$L_c = 7.2 \times 10^7 rev$$

$$R_{Az} = 1.6583 \ lbf$$

$$R_{Ay} = 0.6036 \ lbf$$

$$R_A = \sqrt{R_{Az}^2 + R_{Ay}^2}$$

$$R_A = \sqrt{1.6583^2 + 0.6036^2}$$

$$R_A = 1.7647 \ lbf$$

a = 3 Para cojinetes de bielas

Ecuación 35

$$F_{R_A} = R_A \left[\frac{L_c}{0.02 + 4.439 (1 - 0.99)^{1/1.483}} \right]^{1/3}$$

$$F_{R_A} = 1.7647 \left[\frac{7.2 \times 10^7 rev}{0.02 + 4.439 (1 - 0.99)^{1/1.483}} \right]^{1/3}$$

$$F_{R_A} = 1218,1194 \ lbf$$

Cojinete B

 $L = \frac{2F}{tS_y}$

$$R_{By} = 0.6035 \, lbf$$

$$R_{Bz} = 1.6585 \, lbf$$

$$R_B = \sqrt{R_{By}^2 + R_{Bz}^2}$$

$$R_B = \sqrt{0.6035^2 + 1.6585^2}$$

$$R_B = 1.7647 \, lbf$$

$$F_{R_B} = 1.7647 \left[\frac{7.2 \times 10^7 rev}{0.02 + 4.439 (1 - 0.99)^{1/1.483}} \right]^{1/3}$$

$$F_{R_B} = 1218.1194 \, lbf$$
Cuñas
$$T = 26.5336 \, lbf \cdot in$$

$$\phi = D_3 = 0.4 \, in$$

$$L = 4 \, in$$

$$t = \frac{3}{_{32}} = 0.09375 \, in$$

$$S_y = 57 \, KPSI \, \text{AISI 1020}$$

$$F = \frac{T}{r}$$

$$F = \frac{26.5336 \, lbf \cdot in}{0.2}$$

$$F = 132.668 \, lbf$$

Ecuación 37

Ecuación 38

Ecuación 39

$$L = \frac{2 \cdot 132.668 \, lbf}{0.09375 \, in \, \cdot 57000}$$
$$L = 0.04965 \, in$$

Flecha 2.

En el gráfico 12, se muestra un diagrama de las fuerzas aplicadas en el eje 2 en el sentido X - Y, sacado del programa MDSolids.

$$\uparrow^{+} \sum Fy = 0$$
$$-R_{Ay} + R_{By} + W_{23}^{r} - W_{45}^{r} = 0$$
$$R_{Ay} = W_{23}^{r} + R_{By} - W_{45}^{r}$$
$$R_{Ay} = 1.2071 + 0.1034 - 0.4828$$
$$R_{Ay} = 0.8277 \ lbf$$

$$\begin{aligned} \swarrow^{+} \sum Fz &= 0 \\ -R_{Az} + R_{Bz} + W_{23}^{t} - W_{45}^{r} &= 0 \\ R_{Az} &= W_{23}^{t} + R_{Bz} - W_{45}^{r} \\ R_{Az} &= 3.3167 - 0.2842 - 1.3266 \end{aligned}$$

 $R_{Az} = 2.2743 \ lbf$

En el gráfico 13, se muestra un diagrama de las fuerzas aplicadas en el eje 2 en el sentido Y - Z, sacado del programa MDSolids.

$$\mho^{+} \sum M_{Az} = 0$$

$$R_{Bz} \cdot 12.25 \ in + W_{23}^{t} \cdot 2.75 \ in - W_{45}^{t} \cdot 9.5 \ in = 0$$

$$R_{Bz} \cdot 12.25 \ in + 3.3167 \cdot 2.75 \ in - 1.3266 \cdot 9.5 \ in = 0$$

$$R_{Bz} = 0.2842 \ lbf$$

$$T = W_{45}^t \left(\frac{d}{2}\right)$$
$$T = 1.3266 \left(\frac{16 \text{ in}}{2}\right)$$
$$T = 10.6128 \text{ lbf} \cdot \text{in}$$

En el gráfico 14, se muestra las áreas generadas por las fuerzas y las reacciones del eje 2 en el sentido X – Y, sacado del programa MDSolids.

$$A_1 = -0.8277 \ lbf \cdot 2.75$$

 $A_1 = -2.2761 \ lbf \cdot in$

 $A_2 = 0.3794 \ lbf \cdot 6.75$ $A_2 = 2.5609 \, lbf \cdot in$

$$A_{3} = -0.1034 \ lbf \cdot 2.75$$
$$A_{2} = -0.2843 \ lbf \cdot in$$

Fuente: (Mullo P, 2020)

En el gráfico 15, se muestra el momento flector generado por las fuerzas y las reacciones del eje 2 en el sentido X – Y, sacado del programa MDSolids.

$$M_0 = 0$$

$$M_1 = A_1 + M_0$$

 $M_1 = -2.2761 \ lbf \cdot in$

$$M_2 = A_2 + M_1$$

 $M_2 = 2.5609 - 2.2761$
 $M_2 = 0.2848$

 $M_3 = A_3 + M_2$ $M_3 = -0.2843 + 0.2848$

$$M_{3} = 0$$

En el gráfico 16, se muestra las áreas generadas por las fuerzas y las reacciones del eje 2 en el sentido Y – Z, sacado del programa MDSolids.

$$A_{1} = -2.2743 \ lbf \ \cdot 2.75 \ in$$

$$A_{1} = -6.2543 \ lbf \ \cdot \ in$$

$$A_{2} = 1.0424 \ lbf \ \cdot 6.75 \ in$$

$$A_{2} = 7.0362 \ lbf \ \cdot \ in$$

$$A_{3} = -0.2842 \ lbf \ \cdot 2.75 \ in$$

$$A_3 = -0.7815 \ lbf \cdot in$$

En el gráfico 17, se muestra el momento flector generado por las fuerzas y las reacciones del eje 2 en el sentido Y - Z, sacado del programa MDSolids.

$$M_0 = 0$$
$$M_1 = A_1 + M_0$$
$$M_1 = -6.2543 \ lbf \cdot in$$

$$M_2 = A_2 + M_1$$

 $M_2 = 7.0362 - 6.2543$
 $M_2 = 0.7819$

$$M_3 = A_3 + M_2$$

 $M_3 = -0.7815 + 0.7819$
 $M_3 = 0$

$$M = \sqrt{-6.2543^2 + (-2.2701)^2}$$
$$M = 6.6555 \ lbf \cdot in$$

Anexo 6: Filete de hombro: bien redondeado $\binom{r}{d} = 0.1$ $k_t = 1.7$ $k_{ts} = 1.5$ $k_f = k_t$ $k_{fs} = k_{ts}$ AISI 1020 $S_{ut} = 68 \ KPSI$ Anexo 8: Maquinado o laminado en frío ($a = 2.7 \ y \ b = -0.265$) $k_a = a \cdot S_{ut}^b$ $k_a = 2.7 \cdot (68)^{-0.265}$

$$k_a = 0.8825 \ KPSI$$

$$k_b = 0.9$$

$$k_c = k_d = k_e = 1$$

$$k_f = 0.24 - 0.9 \approx 0.5$$

$$S_e = k_a \cdot k_b \cdot \frac{k_e}{k_e} \cdot \frac{k_e}{k_e} \cdot \frac{k_f}{k_e} \cdot S_u$$

$$S_e = 0.8825 \cdot 0.9 \cdot 0.5 \cdot 68$$

$$S_e = 27.019 \text{ KPSI}$$

$$d = \left\{ \frac{16n}{\pi} \left(\frac{2k_f \cdot M_a}{S_e} + \frac{\left[3(k_{fs} \cdot T_m)^2\right]^{1/2}}{S_{ut}} \right) \right\}^{1/3}$$
$$d = \left\{ \frac{16 \cdot 2}{\pi} \left(\frac{2 \cdot 1.7 \cdot 0.6555 \ lbf \cdot in}{27000} + \frac{\left[3(1.5 \cdot 10.6123)^2\right]^{1/2}}{68000} \right) \right\}^{1/3}$$
$$d = 0.2331 \approx 0.24 \ in$$

$$d = 0.24$$

 $D/d = 1.2$
 $D = 1.2 \cdot 0.24$
 $D = 0.288 \approx 0.3$ in

 $\frac{D}{d} = \frac{0.3 \text{ in}}{0.24 \text{ in}}$

$$\frac{D}{d} = 1.25$$
$$r = \frac{d}{10}$$
$$r = \frac{0.3}{10}$$
$$r = 0.03 in$$
$$\frac{r}{d} = \frac{0.03 in}{0.3 in}$$
$$\frac{r}{d} = 0.1$$

Para el valor de k_t se obtuvo del análisis del anexo 9; al igual que el valor de q del anexo 10.

$$k_t = 1.45$$

$$q = 0.82$$

$$k_f = 1 + q(k_t - 1)$$

$$k_f = 1 + 0.82(1.45 - 1)$$

$$k_f = 1.369$$

Para el valor de k_t se obtuvo del análisis del anexo 11; al igual que el valor de q del anexo 12.

$$k_{ts} = 1.35$$

$$q_s = 0.95$$

$$k_{fs} = 1 + q_s(k_{ts} - 1)$$

$$k_{fs} = 1 + 0.95(1.35 - 1)$$

$$k_{fs} = 1.3325$$

$$0.11 \le d \le 2in$$

$$k_f = 0.24 - 0.9 \cong 0.5$$

$$k_b = 0.879 \cdot d^{-0.107}$$

$$k_b = 0.879 \cdot (0.3)^{-0.107}$$

$$k_b = 0.9998$$

$$k_{c} = k_{d} = k_{e} = 1$$

$$S_{e} = k_{a} \cdot k_{b} \cdot \frac{k_{e}}{k_{e}} \cdot \frac{k_{a}}{k_{e}} \cdot \frac{k_{f}}{k_{e}} \cdot \frac{k_{f}}{k_{$$

$$\vartheta'_a = 3437.3241 PSI$$

$$\vartheta'_{m} = \left[3\left(\frac{16 \cdot k_{fs} \cdot T_{m}}{\pi \cdot d^{3}}\right)^{2}\right]^{1/2}$$
$$\vartheta'_{m} = \left[3\left(\frac{16 \cdot 1.3325 \cdot 10.6128}{\pi \cdot 0.3^{3}}\right)^{2}\right]^{1/2}$$
$$\vartheta'_{m} = 4620\,2361\,PSL$$

$$\vartheta'_m = 4620.2361 PSR$$

Criterio Goodman

$$\frac{1}{n_f} = \frac{\vartheta'_a}{S_e} + \frac{\vartheta'_m}{S_{ut}}$$

$$\frac{1}{n_f} = \frac{3437.3241}{29998} + \frac{4620.2361}{68000}$$

$$\frac{1}{n_f} = 0.1825$$

$$n_f = 5.4785$$

$$S_y = 57000$$

$$n_y = \frac{S_y}{\vartheta'_a + \vartheta'_m}$$

$$n_y = \frac{57000}{3437.324 + 4620.2361}$$

$$n_y = 7.0741$$
Aprillo do retonoión EB0021. Ver en

Anillo de retención ER0031. Ver anexo 13.

$$a = grosor = 0.025$$

$$r = 0.01 in$$

$$\phi = 0.28 in$$

$$t = profundidad = 0.026$$

$$\frac{r}{t} = \frac{0.01 in}{0.026 in}$$

$$\frac{r}{t} = 0.3816$$

$$\frac{a}{t} = \frac{0.025 \text{ in}}{0.026 \text{ in}}$$
$$\frac{a}{t} = 0.9615$$

Para el valor de Kt se obtuvo del anexo 14, al igual que el valor de q del anexo 10.

$$k_t = 3.9$$

$$q = 0.9$$

$$k_f = 1 + q(k_t - 1)$$

$$k_f = 1 + 0.65(4.4 - 1)$$

$$k_f = 3.61$$

$$\vartheta'_{a} = \frac{32 \cdot k_{f} \cdot M_{a}}{\pi \cdot d^{3}}$$
$$\vartheta'_{a} = \frac{32 \cdot 3.61 \cdot 6.6555}{\pi \cdot 0.3^{3}}$$
$$\vartheta'_{a} = 9064.0904 PSI$$

$$n_{f} = \frac{S_{e}}{\vartheta'_{a}}$$

$$n_{f} = \frac{29.998}{9064.0904}$$

$$n_{f} = 3.3095$$

$$D_{1} = D_{7} = 0.36 \text{ in}$$

$$D_{2} = D_{6} = 0.25 \text{ in}$$

$$D_5 = D_3 = 0.3 in$$

 $D_4 = 0.21 in$

Cojinetes: Cojinete A

$$L_{c} = 1200h \cdot \frac{60 \min}{1 h} \cdot \frac{250 rev}{\min}$$
$$L_{c} = 1.8 \times 10^{8} rev$$

$$R_{Az} = 2.2743 \ lbf$$

$$R_{Ay} = 0.8277 \ lbf$$

$$R_A = \sqrt{R_{Az}^2 + R_{Ay}^2}$$

$$R_A = \sqrt{2.2743^2 + 0.8277^2}$$

$$R_A = 2.4202 \ lbf$$

a = 3 Para cojinetes de bolas

$$\begin{split} F_{R_A} &= R_A \left[\frac{L_c}{0.02 + 4.439 \ (1 - 0.99)^{41,483}} \right]^{1/3} \\ F_{R_A} &= 2.4202 \left[\frac{1.8 \times 10^8 rev}{0.02 + 4.439 \ (1 - 0.99)^{41,483}} \right]^{1/3} \\ F_{R_A} &= 2267.3414 \ lbf \end{split}$$

Cojinete B $R_{By} = 0.1034 \ lbf$ $R_{Bz} = 0.2842 \ lbf$ $R_B = \sqrt{R_{By}^2 + R_{Bz}^2}$ $R_B = \sqrt{0.1034^2 + 0.2842^2}$ $R_B = 0.3024 \ lbf$

$$F_{R_B} = R_B \left[\frac{L_c}{0.02 + 4.439 (1 - 0.99)^{41,483}} \right]^{1/3}$$

$$F_{R_B} = 0.3024 \left[\frac{1.8 \times 10^8 rev}{0.02 + 4.439 (1 - 0.99)^{41,483}} \right]^{1/3}$$

$$F_{R_B} = 283.30 \ lbf$$
Cuñas
$$T = 10.6128 \ lbf \cdot in$$

$$D_5 = D_3 = 0.3 \ in$$

$$t = 3132 = 0.09375$$
 in

$$S_y = 57 \ KPSI \ AISI \ 1020$$

$$F = \frac{T}{r}$$

$$F = \frac{10.6128 \, lbf \cdot in}{0.312}$$

$$F = 70.752 \, lbf$$

$$w = \frac{3}{32}$$
$$w = 0.09375$$

$$n = \frac{S_y}{\vartheta}$$

$$L = \frac{2F}{tS_y}$$

$$L = \frac{2 \cdot 70.752 \ lbf}{0.09375 \ in \cdot 57000}$$

$$L = 0.02648 \ in$$

Flecha 3.

$$W_{45}^r = 0.4828 \ lbf$$

 $W_{45}^t = 1.3266 \ lbf$

En el gráfico 18, se muestra un diagrama de fuerza aplicada en el eje 3 en el sentido X – Y, sacado del programa MDSolids.

$$\uparrow^{+} \sum Fy = 0$$
$$-R_{Ay} - R_{By} + W_{45}^{r} = 0$$
$$R_{Ay} = -R_{By} + W_{45}^{r}$$
$$R_{Ay} = -0.2299 + 0.4828$$
$$R_{Ay} = 0.2528 \ lb f$$

$$\begin{aligned} \varkappa^{+} \sum Fz &= 0 \\ -R_{Az} - R_{Bz} + W_{45}^{t} &= 0 \\ R_{Az} &= -R_{Bz} + W_{45}^{t} \\ R_{Az} &= -0.6317 + 1.3266 \\ R_{Az} &= 0.6948 \ lbf \end{aligned}$$

$$\mho^{+} \sum M_{Ay} = 0$$

-R_{By} · 5.25 in + W^r₄₅ · 2.5 in = 0
-R_{By} · 5.25 in + 0.4828 · 2.5 in = 0
R_{By} = 0.2299 lbf

Fuente: (Mullo P, 2020)

En el gráfico 19, se muestra un diagrama de fuerza aplicada en el eje 3 en el sentido Y - Z, sacado del programa MDSolids.

$$\mho^{+} \sum M_{Az} = 0$$

-R_{Bz} · 5.25 in + W^t₄₅ · 2.5 in = 0
-R_{Bz} · 5.25 in + 1.3266 · 2.5 in = 0
R_{Bz} = 0.6317 lbf

Gráfico 20: Diagrama de las Áreas Generadas por la fuerza y reacciones en el sentido x-y. *Fuente:* (Mullo P, 2020)

En el gráfico 20, se muestra las áreas generadas por la fuerza y las reacciones del eje 3 en el sentido X - Y, sacado del programa MDSolids.

Fuente: (Mullo P, 2020)

En el gráfico 21, se muestra el momento flector generado por la fuerza y las reacciones del eje 3 en el sentido X - Y, sacado del programa MDSolids.

 $M_0 = 0$ $M_1 = A_1 + M_0$ $M_1 = -0.6325 \ lbf \cdot in$

 $M_2 = A_2 + M_1$ $M_2 = 0.6325 - 0.6325$

$$M_2 = 0$$

Gráfico 22: Diagrama de las Áreas Generadas por la fuerza y reacciones en el sentido y-z. Fuente: (Mullo P, 2020)

En el gráfico 22, se muestra las áreas generadas por la fuerza y las reacciones del eje 3 en el sentido Y - Z, sacado del programa MDSolids.

$$A_1 = -0.6948 \ lbf \cdot 2.5 \ in$$

 $A_1 = -1.737 \ lbf \cdot in$

En el gráfico 23, se muestra el momento flector generado por la fuerza y las reacciones del eje 3 en el sentido Y - Z, sacado del programa MDSolids.

$$M_{0} = 0$$

$$M_{1} = A_{1} + M_{0}$$

$$M_{1} = -1.737 \ lbf \cdot in$$

$$M_{2} = A_{2} + M_{1}$$

$$M_{2} = 1.7426 - 1.737$$

$$M_{2} = 0$$

$$M = \sqrt{0.6232^2 + 1.737^2}$$
$$M = 1.8484 \ lbf \cdot in$$

Anexo 6: Filete de hombro: bien redondeado $\binom{r}{d} = 0.1$ $k_t = 1.7$
$$k_{ts} = 1.5$$

 $k_f = k_t$
 $k_{fs} = k_{ts}$
AISI 1020
 $S_u = 68 \ KPSI$
Anexo 8: Maquinado o laminado en frío ($a = 2.7 \ y \ b = -0.265$)

$$k_a = a \cdot S_{ut}^b$$

 $k_a = 2.7 \cdot (68)^{-0.265}$
 $k_a = 0.8825 \ KPSI$

$$k_b = 0.9$$

$$k_c = k_d = k_e = 1$$

$$k_f = 0.24 - 0.9 \approx 0.5$$

$$S_e = k_a \cdot k_b \cdot \frac{k_e}{k_e} \cdot \frac{k_e}{k_e} \cdot k_f \cdot S_u$$

$$S_e = 0.8825 \cdot 0.9 \cdot 0.5 \cdot 68$$

$$S_e = 27.019 KPSI$$

$$d = \left\{ \frac{16n}{\pi} \left(\frac{2k_f \cdot M_a}{S_e} + \frac{\left[3(k_{fs} \cdot T_m)^2\right]^{1/2}}{S_{ut}} \right) \right\}^{1/3}$$
$$d = \left\{ \frac{16 \cdot 2}{\pi} \left(\frac{2 \cdot 1.7 \cdot 1.8484 \, lbf \cdot in}{27019} + \frac{\left[3(1.5 \cdot 4.2451)^2\right]^{1/2}}{68000} \right) \right\}^{1/3}$$
$$d = 0.159 \approx 0.2 \, in$$

d = 0.24D/d = 1.2 $D = 1.2 \cdot 0.2$ D = 0.24 in

$$\frac{D}{d} = \frac{0.24 \text{ in}}{0.24 \text{ in}}$$
$$\frac{D}{d} = 1$$

 $r = \frac{d}{10}$ $r = \frac{0.24}{10}$ r = 0.024 in

$$\frac{r}{d} = \frac{0.024 \text{ in}}{0.24 \text{ in}}$$
$$\frac{r}{d} = 0.1$$

Para el valor de k_t se obtuvo del análisis del anexo 9; al igual que el valor de q del anexo 10.

$$k_t = 1.45$$

$$q = 0.9$$

$$k_f = 1 + q(k_t - 1)$$

$$k_f = 1 + 0.9(1.45 - 1)$$

$$k_f = 1.405$$

Para el valor de k_t se obtuvo del análisis del anexo 11; al igual que el valor de q del anexo 12.

$$k_{ts} = 1$$

$$q_s = 0.95$$

$$k_{fs} = 1 + q_s(k_{ts} - 1)$$

$$k_{fs} = 1 + 0.95(1 - 1)$$

$$k_{fs} = 1$$

$$0.11 \le d \le 2in$$

$$k_f = 0.24 - 0.9 \cong 0.5$$

$$k_{b} = 0.879 \cdot d^{-0.107}$$

$$k_{b} = 0.879 \cdot (0.24)^{-0.107}$$

$$k_{b} = 1.014$$

$$k_{c} = k_{d} = k_{e} = 1$$

$$S_{e} = k_{a} \cdot k_{b} \cdot \frac{k_{e}}{k_{e}} \cdot \frac{k_{e}}{k_{e}} \cdot k_{f} \cdot S_{u}$$

$$S_{e} = 0.8825 \cdot 1.014 \cdot 0.5 \cdot 68$$

$$S_{e} = 30.725 \ KPSI$$

$$\vartheta'_{a} = \frac{32 \cdot k_{f} \cdot M_{a}}{\pi \cdot d^{3}}$$

$$\vartheta'_{a} = \frac{32 \cdot 1.405 \cdot 1.8484}{\pi \cdot 0.24^{3}}$$

$$\vartheta'_{a} = 1913.5449 \ PSI$$

$$\vartheta'_{m} = \left[3\left(\frac{16 \cdot k_{fs} \cdot T_{m}}{\pi \cdot d^{3}}\right)^{2}\right]^{1/2}$$

$$\vartheta'_{m} = \left[3\left(\frac{16 \cdot 1 \cdot 4.2451}{\pi \cdot 0.24^{3}}\right)^{2}\right]^{1/2}$$

$$\vartheta'_{m} = 2708.8498 PSI$$

Criterio Goodman
$$\frac{1}{n_{f}} = \frac{\vartheta'_{a}}{S_{e}} + \frac{\vartheta'_{m}}{S_{ut}}$$

$$\frac{1}{n_{f}} = \frac{1913.5449}{30725} + \frac{2708.8498}{68000}$$

$$\frac{1}{n_{f}} = 0.1021$$

$$n_{f} = 9.7928$$

$$S_{y} = 57000$$

$$n_{y} = \frac{S_{y}}{\vartheta'_{a} + \vartheta'_{m}}$$

57000

 $n_{\mathcal{Y}} = \frac{57000}{1913.5449 + 2708.8498}$

 $n_y = 12.3312$

Anillo de retención ER0023. Ver anexo 13.

a = grosor = 0.015 r = 0.01 in $\phi = 0.215 in$ t = profundidad = 0.019 $\frac{r}{t} = \frac{0.01 in}{0.019 in}$ $\frac{r}{t} = 0.5263$

$$\frac{a}{t} = \frac{0.015 \text{ in}}{0.019 \text{ in}}$$
$$\frac{a}{t} = 0.7894$$

Para el valor de Kt se obtuvo del anexo 14, al igual que el valor de q del anexo 10.

$$k_{t} = 4.5$$

$$q = 0.65$$

$$k_{f} = 1 + q(k_{t} - 1)$$

$$k_{f} = 1 + 0.65(4.5 - 1)$$

$$k_{f} = 3.275$$

$$\vartheta'_{a} = \frac{32 \cdot k_{f} \cdot M_{a}}{\pi \cdot d^{3}}$$

$$\vartheta'_{a} = \frac{32 \cdot 3.275 \cdot 1.8484}{\pi \cdot 0.24^{3}}$$

$$\vartheta'_{a} = 4460.3983 PSI$$

$$n_{f} = \frac{S_{e}}{\vartheta'_{a}}$$

$$n_{f} = \frac{30.725}{4460.3983}$$

$$n_{f} = 6.888$$

$$D_{1} = D_{5} = 0.2 in$$

$$D_{2} = 0.28 in$$

$$D_{3} = 0.24 in$$

$$D_{4} = 0.22 in$$
Cojinetes: Cojinete A
$$L_{c} = 1200h \cdot \frac{60 \min}{1 h} \cdot \frac{625 rev}{\min}$$

$$L_{c} = 4.5 \times 10^{8} rev$$

$$R_{Az} = 0.6948 \, lbf$$

$$R_{Ay} = 0.2528 \, lbf$$

$$R_{A} = \sqrt{R_{Az}^{2} + R_{Ay}^{2}}$$

$$R_{A} = \sqrt{0.6948^{2} + 0.2528^{2}}$$

$$R_{A} = 0.7393 \, lbf$$

a = 3 Para cojinetes de bolas

$$F_{R_A} = R_A \left[\frac{L_c}{0.02 + 4.439 (1 - 0.99)^{41,483}} \right]^{1/3}$$

$$F_{R_A} = 0.7393 \left[\frac{4.5 \times 10^8 rev}{0.02 + 4.439 (1 - 0.99)^{41,483}} \right]^{1/3}$$

$$F_{R_A} = 940.0112 \ lbf$$

Cojinete B $R_{By} = 0.2299 \, lbf$ $R_{Bz} = 0.6317 \, lbf$ $R_B = \sqrt{R_{By}^2 + R_{Bz}^2}$ $R_B = \sqrt{0.2299^2 + 0.6317^2}$ $R_B = 0.6722 \, lbf$

$$F_{R_B} = R_B \left[\frac{L_c}{0.02 + 4.439 (1 - 0.99)^{41,483}} \right]^{1/3}$$

$$F_{R_B} = 0.6722 \left[\frac{4.5 \times 10^8 rev}{0.02 + 4.439 (1 - 0.99)^{41,483}} \right]^{1/3}$$

$$F_{R_B} = 854.6943 \, lbf$$
Cuñas
$$T = 4.2451 \, lbf \cdot in$$

$$D_3 = 0.24 \, in$$

$$t = 3132 = 0.09375 \, in$$

$$S_y = 57 \, KPSI \, AISI \, 1020$$

$$F = \frac{T}{r}$$

$$F = \frac{4.2451 \, lbf \cdot in}{0.12}$$

$$F = 35.3758 \, lbf$$

$$n = \frac{S_y}{\vartheta}$$

$$L = \frac{2F}{tS_y}$$

$$L = \frac{2 \cdot 35.3758 \, lbf}{0.09375 \, in \cdot 57000}$$

$$L = 0.01324 \, in$$
Resumen:

 Tabla 9. Resumen de los Valores Obtenidos para la Flecha 1.

Flecha 1				
Momento Torsor	26,5336 lbf*in			
Momento Flecto	4,6217 lbf*in			
Diámetro 1	0,28 in			
Diámetro 2	0,33 in			
Diámetro 3	0,4 in			
Diámetro 4	0,48 in			
Diámetro 5	0,28 in			
Fuerza del cojinete A	1218,1194 lbf			
Fuerza del cojinete B	1218,1194 lbf			

Cuñas	132,668 lbf
Longitud mínima de la cuña	0,05 in
Límite de resistencia a la fatiga	29,017 KPSI
Esfuerzo medio	5046.9154 PSI
Esfuerzo alternante	1006,9904 PSI

Fuente: (Mullo P, 2020)

 Tabla 10. Resumen de los Valores Obtenidos para la Flecha 2.

Flecha 2				
Momento Torsor	10,3128 lbf*in			
Momento Flecto	6,6555 lbf*in			
Diámetro 1	0,2 in			
Diámetro 2	0,24 in			
Diámetro 3	0,3 in			
Diámetro 4	0,36 in			
Diámetro 5	0,3 in			
Diámetro 6	0,24 in			
Diámetro 7	0,2 in			
Fuerza del cojinete A	2267,3414 lbf			
Fuerza del cojinete B	283,30 lbf			
Cuñas	70,752 lbf			
Longitud mínima de la cuña	0,03 in			
Límite de resistencia a la fatiga	29,998 KPSI			
Esfuerzo medio	4620.2361 PSI			
Esfuerzo alternante	3437,3241 PSI			

Fuente: (Mullo P, 2020)

 Tabla 11. Resumen de los Valores Obtenidos para la Flecha 3.

Flecha 3			
Momento Torsor	4,2451 lbf*in		
Momento Flecto	1,8484 lbf*in		
Diámetro 1	0,2 in		
Diámetro 2	0,28 in		
Diámetro 3	0,24 in		
Diámetro 4	0,22 in		
Diámetro 5	0,2 in		
Fuerza del cojinete A	940,0112 lbf		
Fuerza del cojinete B	854,6943 lbf		
Cuñas	35,3158 lbf		
Longitud mínima de la cuña	0,02 in		
Límite de resistencia a la fatiga	30,725 KPSI		
Esfuerzo medio	2708,8498 PSI		
Esfuerzo alternante	1913.5449 PSI		

Nota: los diámetros obtenidos para las flechas son pequeños es por esto que por concepto de diseño se multiplicaron por tres para así lograr tener una geometría mecánica mejor y cumplir funciones geométricas como el acople de la chaveta, también ser más adaptada a la realidad, al igual que, se procedió aproximar los diámetros de la flecha para que estos coincidan con los valores estandarizados del diámetro interior para el engrane.

Tabla 12. Factores de Seguridad Calculados y Esfuerzo máximos Obtenidos para cada Flecha.

Flecha	Factor de seguridad contra la fatiga (nf)	Factor de seguridad contra la fluencia (ny)	Esfuerzo máximo (θmax)
Flecha 1	9.1898	9.4154	6053.9058 PSI
Flecha 2	5.4785	7.0741	8057.5602 PSI
Flecha 3	9.7928	12.3312	4622.3947 PSI
	Fuent	e: (Mullo P, 2020)	

Como se puede observar en la tabla 11 los valores de los esfuerzos son bajos comparados a los esfuerzos que puede resistir en material escogido (AISI 1020), es por esto que igual sus factores de seguridad son elevados, y se garantiza la vida funcional de la caja multiplicadora.

Modelado virtual.

El modelamiento se realizó en el programa de SolidWorks primero comenzando por las flechas, cuñas para después diseñar la carcasa y con los complementos del Toolbox basándonos en la norma ANSI en pulgadas se pudo obtener los engranes, anillos de retención y rodamientos; con estos elementos se logró ensamblar la caja multiplicadora de RPM. Teniendo así el siguiente ensamble.

Imagen 5: Caja Multiplicadora Ensamblada en SolidWorks. Fuente: (Mullo P, 2020)

En la imagen 5, se muestra la caja multiplicadora ensamblada en el programa de SolidWorks.

Nota: los componentes diseñados tienen sus planos y se encuentran en los anexos.

Simulación.

Para la animación de movimiento se la realizó en el software SolidWorks.

La simulación de transmisión se realizó en el software Gears Simulation versión demo y se obtuvo los siguientes resultados:

Imagen 6: Ingreso del Ultimo Valor del Engrane y su Aproximada Velocidad. Fuente: (Mullo P, 2020)

En la imagen 6, se muestra la ventana de ingreso del último dato del número de dientes del engrane, en el cual nos dice que sus revoluciones serán de 625, sacado del programa Gears Simulation versión demo.

La velocidad de entrada es de 100rpm, una potencia de 31.4 W, un torque de 3 N*m; para después obtener como valores de salida en la simulación de 625 rpm, Una potencia de 25.4 W, y un torque de 0.4 N*m.

Imagen 7: Valores Obtenidos de la Simulación. Fuente: (Mullo P, 2020)

En la imagen 7, se muestra los valores obtenidos de la simulación de Gears Simulation.

Como se puede observar el valor calculado de revoluciones por minuto de salida se obtienen en la simulación, dando así una veracidad a la modelación matemática realizada.

Análisis en ANSYS de los Engranes.

La simulación de esfuerzos en ANSYS se realizó con un acero AISI 1020.

Datos ocupados del material a utilizar en la simulación de ANSYS.

Tabla 13. Datos del Material Acero AISI 1020.

AISI 1020 > Constants				
Density	0,2836 lbm in^-3			
Isotropic Secant Coefficient of Thermal Expansion	6,6667e-006 F^-1			
Specific Heat Constant Pressure	0,10366 BTU lbm/-1 F/-1			
Isotropic Thermal Conductivity	8,0917e-004 BTU s^-1 in^-1 F^-1			
Isotropic Resistivity	8,5235 ohm cmil in^-1			

 Tabla 14. Limite Elástico del Material Acero Estructural.

AISI 1020 > Compressive Yield Strength Compressive Yield Strength psi 36259

Fuente: (Mullo P, 2020)

 Tabla 15. Resistencia a la Tracción del Material Acero Estructural.

AISI 1020 > Tensile Yield Strength Tensile Yield Strength psi 29725 Fuente: (Mullo P, 2020)

Tabla 16. Resistencia a la Tracción del Material Acero Estructural.

AISI 1020 > Tensile Ultimate Strength Tensile Ultimate Strength psi 55100

Fuente: (Mullo P, 2020).

Tabla 17. Datos del Mallado del Conjunto Utilizado en Todas las Simulaciones.

Model (A4) > Mesh					
Object Name	Mesh				
State	Solved				
Display					
Display Style	Use Geometry Setting				
Defaults					
Physics Preference	Mechanical				
Element Order	Program Controlled				
Element Siz e	Default				
Sizing					
Use Adaptive Sizing	Yes				
Resolution	Default (2)				
Mesh Defeaturing	Yes				
Defeature Siz e	Default				
Transition	Fast				
Span Angle Center	Coarse				
Initial Size Seed	A ssembly				
Bounding Box Diagonal	38,266 in				
Average Surface Area	3,6905 in²				
Minimum Edge Length	0,12963 in				
Quality					
Check Mesh Quality	Yes, Errors				
Error Limits	Standard Mechanical				
Target Quality	Default (0.050000)				
Smoothing	Medium				
Mesh Metric	None				
Inflation					
Use Automatic Inflation	None				
Inflation Option	Smooth Transition				
Transition Ratio	0,272				
Maximum Layers	5				
Growth Rate	1,2				
Inflation Algorithm	Pre				
View Advanced Options	No				
Advan ced					
Number of CPUs for Parallel Part Meshing	Program Controlled				
Straight Sided Elements	No				
Number of Retries	Default (4)				
Rigid Body Behavior	Dimensionally Reduced				
Triangle Surface Mesher	Program Controlled				
Topology Checking	Yes				
Pinch Tolerance	Please Define				
Generate Pinch on Refresh	No				
Statistics					
Nodes	348949				
Elements	237654				

Imagen 8: Mallado del Conjunto. Fuente: (Mullo P, 2020)

En la imagen 8, se muestra el mallado realizado para el primer tren de engranes en el programa de Ansys, teniendo así un total de 348949 nodos y 237654 elementos para analizar.

El mallado presentado es utilizado para todos los análisis realizados.

Análisis Estructural Estática Engrane N2 (Static Structural).

Tabla 18. Resultados Generales de la Simulación de Análisis Estructural Estático.

Model (A4) > Static Structural (A5) > Solution (A6) > Results						
Object Name	Total Deformation	Equivalent Stress 3				
State	Solved					
			Scope			
Scoping Method	Geometry	Selection		Named S	Selection	
Geometry	All B	odies				
Named Selection				cara	cara2	
			Definition			
Туре	Total Deformation	Equivalent Elastic Strain		Equivalent (von-Mises) Stree	55	
By			Tir	ne		
Display Time			La	st		
Calculate Time			V			
History			10	ລ 		
Identifier						
Suppressed			N	0		
			Results			
Minimum	0, in	0, in 7,9694e-011 in/in 2,0817e-003 psi 28,799 psi				
Maximum	1,1255e-004 in	1,0986e-004 in/in	1,0986e-004 in/in 2627,6 psi		1354,1 psi	
Average	6,6881e-005 in	8,8311e-006 in/in	8,8311e-006 in/in 246,24 psi 394,34 psi		141,61 psi	
Minimum Occurs On	pppp_Inch - Spur gear 2.5DP 16T 20PA 3FW — S16N3.0H2.0L1.125S1\Keyway	pppp_Inch - Spur gear 2.5D S40N3.0H2.0L1.25	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FW — pppp_Inch - Spur gear 2.5DP 16T 20PA 3FW — S40N3.0H2.0L1.25S1\Kevway S16N3.0H2.0L1.125S1\Kevway		pppp_inch - Spur gear 2.5DP 40T 20PA 3FW S40N3.0H2.0L1.25S1\Keyway	
Maximum Occurs On	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FW — S 40N3.0H2.0L1.25S1\Keyway	pppp_inch - S	pur gear 2.5DP 16T 20PA	3FW —S16N3.0H2.0L1.125S1\Keyway	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FW S40N3.0H2.0L1.25S1\Keyway	
			Minimum Value Over 1	īme		
Minimum	0, in	7,6296e-012 in/in	2,2013e-004 psi	4,9843 psi	2,2383e-002 psi	
Maximum	0, in	7,9694e-011 in/in	2,0817e-003 psi	28,799 psi	0,25408 psi	
			Maximum Value Over	Time		
Minimum	1,1461e-005 in	1,101e-005 in/in		263,35 psi	130,53 psi	
Maximum	1,1255e-004 in	1,0986e-004 in/in		2627,6 psi	1354,1 psi	
			Information			
Time			1,	S		
Load Step						
Substep			6	5		
Iteration Number			1	1		
			Integration Point Res	lits		
Display Option				Averaged		
Average Across Bodies	No					

Deformación Total Engrane N2.

Imagen 9: Deformación Total. Fuente: (Mullo P, 2020)

En la imagen 9, se muestra la máxima deformación total del engrane 2 en el análisis estructural del Programa de Ansys.

Tabla 19. Resultados de la Deformación Total.

Model (A4)	> Static Structural	(A5) > Solution	n (A6) > Total	Deformation

Time [s]	Minimum [in]	Maximum [in]	Average [in]
0,1		1,1461e-007	6,8501e-008
0,2		2,2592e-007	1,3434e-007
0,35	0,	3,9173e-007	2,3236e-007
0,575		6,4806e-007	3,8544e-007
0,7875		8,9323e-007	5,3218e-007
1,		1,1255e-006	6,6882e-007

Gráfico 24: Grafica de los Datos de la Deformación Total. Fuente: (Mullo P, 2020)

En el gráfico 21 se observa los datos de la deformación total obteniendo así un valor mínimo de 0 y un valor máximo de 0.000001125 in de deformación en el engrane, por lo tanto, estos valores son bajos y se garantiza el correcto funcionamiento del multiplicador.

Tensión Elástica Equivalente Engrane N2.

Imagen 10: Tensión Elástica Equivalente. Fuente: (Mullo P, 2020)

En la imagen 10, se muestra la tensión elástica equivalente del engrane 2 en el análisis estructural del Programa de Ansys.

Model (A4)	> Static	Structural (A5)	Solution (A6) >	Equivalent El	astic Strai
	Time [s]	Minimum [in/in]	Maximum [in/in]	Average [in/in]	
	0,1	7,6297e-014	1,1013e-007	9,1367e-009	
	0,2	1,5422e-013	2,1748e-007	1,7734e-008	
	0,35	3,1594e-013	3,8555e-007	3,0617e-008	
	0,575	4,3403e-013	6,4038e-007	5,1019e-008	
	0,7875	5,62e-013	8,7023e-007	7,0579e-008	
	1,	7,9694e-013	1,1013e-006	8,8318e-008	

Tabla 20. Resultados de la Tensión Elástica Equivalente.

Gráfico 25: Grafica de los Datos de la Tensión Equivalente. Fuente: (Mullo P, 2020)

En el gráfico 22 se observa los valores máximos y mínimos de la tensión equivalente que sufre el engrane teniendo así un valor inicial de 0 hasta 0.0000011013 in, así se puede decir que la caja funcionara de manera adecuada sin tener ningún inconveniente.

Estrés Equivalente Engrane N2.

Imagen 11: Estrés Equivalente. **Fuente:** (Mullo P, 2020)

En la imagen 11, se muestra el máximo estrés equivalente del engrane 2 en el análisis estructural del Programa de Ansys.

Tabla 21. Resultados Obtenidos del Estrés Equivalente.

0,1 2,2013e-006 2,6339 0,25496	6
0,2 4,0287e-006 5,1963 0,4946	
0,35 8,3295e-006 9,2107 0,8535	
0,575 1,136e-005 15,302 1,4225	
0,7875 1,5018e-005 20,8 1,9685	
1, 2,0814e-005 26,314 2,4626	

Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Stress

Fuente: (Mullo P, 2020)

Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Stress

Gráfico 26: Grafica de los Datos del Estrés Equivalente. Fuente: (Mullo P, 2020)

En el gráfico 23 se tiene los datos máximos y mínimos graficados teniendo así valores de 0.0000022013 PSI y 26.314 PSI.

Análisis:

En este análisis estático del engrane N2 se evidencia que los valores obtenidos en la deformación total, tensión elástica y el estrés equivalente son valores bajos, por esta razón la caja multiplicadora es factible, dando así una veracidad a los cálculos realizados y material seleccionado.

Análisis Estructural Estática Engrane N3 (Static Structural).

Tabla 22. Resultados Generales de la Simulación de Análisis Estructural Estático.

	Model (A4) > Static Structural (A5) > Solution (A6) > Results				
Object Name	Total Deformation	Equivalent Elastic Strain	Equivalent Stress	Equivalent Stress 2	Equivalent Stress 3
State	Solved				
			Scope		
Scoping Method	Geometry	Selection		Named S	election
Geometry	All B	odies			
Named Selection				cara	cara2
			Definition		
Туре	Total Deformation	Equivalent Elastic Strain		Equivalent (von-Mises) Stres	S
Ву			Tin	ie	
Display Time			La	st	
Calculate Time			Ve	8	
History					
Identifier	Jentifier				
Suppressed			N	0	
			Results		
Minimum	0, in	7,9694e-011 in/in	2,0817e-003 psi	28,799 psi	0,25408 psi
Maximum	1,1255e-004 in	1,0986e-004 in/in		2627,6 psi	1354,1 psi
Average	6,6881e-005 in	8,8311e-006 in/in	246,24 psi	394,34 psi	141,61 psi
Minimum Occurs On	pppp_Inch - Spur gear 2.5DP 16T 20PA 3FW — S16N3.0H2.0L1.125S1\Keyway	pppp_Inch - Spurgear 2.5D S40N3.0H2.0L1.25	P 40T 20PA 3FW — S1\Keyway	pppp_Inch - Spur gear 2.5DP 16T 20PA 3FW S16N3.0H2.0L1.125S1\Keyway	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FW S40N3.0H2.0L1.25S1\Keyway
Maximum Occurs On	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FW — S40N3.0H2.0L1.25S1\Keyway	pppp_Inch - S	pur gear 2.5DP 16T 20PA	3FW —S16N3.0H2.0L1.125S1\Keyway	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FW S40N3.0H2.0L1.25S1\Keyway
			Minimum Value Over T	îme	
Minimum	0, in	7,6296e-012 in/in	2,2013e-004 psi	4,9843 psi	2,2383e-002 psi
Maximum	0, in	7,9694e-011 in/in	2,0817e-003 psi	28,799 psi	0,25408 psi
			Maximum Value Over 1	īme 🛛	
Minimum	1,1461e-005 in	1,101e-005 in/in		263,35 psi	130,53 psi
Maximum	1,1255e-004 in	1,0986e-004 in/in		2627,6 psi	1354,1 psi
			Information		
Time			1,	s	
Load Step			1		
Substep			6	;	
Iteration Number			1'	1	
			Integration Point Res	llts	
Display Option				Averaged	
Average Across Bodies				No	

Deformación Total Engrane N3.

Imagen 12: Deformación Total. Fuente: (Mullo P, 2020)

En la imagen 12, se muestra la máxima deformación total del engrane 3 en el análisis estructural del Programa de Ansys.

Tabla 23. Resultados de la Deformación Total.

Model (B4, C4) > Static Structural (B5) > Solution (B6) > Total Deformation

Time [s]	Minimum [in]	Maximum [in]	Average [in]
0,1		1,0966e-007	6,4985e-008
0,2	0,	2,235e-007	1,334e-007
0,35		3,9451e-007	2,3621e-007
0,575		6,4892e-007	3,8878e-007
0,7875		8,8969e-007	5,3317e-007
1,		1,1281e-006	6,7569e-007

Fuente: (Mullo P, 2020)

Gráfico 27: Grafica de los Datos de la Deformación Total. Fuente: (Mullo P, 2020)

En el gráfico 27 se observa los datos de la deformación total obteniendo así un valor mínimo de 0 y un valor máximo de 0.0000011281 in de deformación en el engrane; estos valores son muy bajos y su deformación es casi nula.

Tensión Elástica Equivalente Engrane N3.

Imagen 13: Tensión Elástica Equivalente. Fuente: (Mullo P, 2020)

En la imagen 13, se muestra la tensión elástica equivalente del engrane 3 en el análisis estructural del Programa de Ansys.

Tabla 24. Resultados de la Tensión Elástica Equivalente.

Model (B4, C4) > Static Structural (B5) > Solution (B6) > Equivalent Elastic Strain

Time [s]	Minimum [in/in]	Maximum [in/in]	Average [in/in]
0,1	8,894e-014	7,2113e-008	8,7045e-009
0,2	1,4924e-013	1,4581e-007	1,811e-008
0,35	3,2279e-013	2,5711e-007	3,2339e-008
0,575	5,5775e-013	4,2452e-007	5,3363e-008
0,7875	7,7885e-013	5,802e-007	7,3191e-008
1,	9,5184e-013	7,3688e-007	9,2648e-008

afico 28: Grafica de los Datos de la Tension Equivale **Fuente:** (Mullo P, 2020)

En el gráfico 28 se observa los valores máximos y mínimos de la tensión equivalente que sufre el engrane teniendo así un valor inicial de 0.00000008894 in

75

hasta 0.000000072113 in, estos valores son bajos y se puede decir que no existirá ningún inconveniente con el funcionamiento del multiplicador.

Estrés Equivalente Engrane N3.

Imagen 14: Estrés Equivalente. Fuente: (Mullo P, 2020)

En la imagen 14, se muestra el máximo estrés equivalente del engrane 3 en el análisis estructural del Programa de Ansys.

 Tabla 25. Resultados Obtenidos del Estrés Equivalente.

		· · ·	
Time [s]	Minimum [psi]	Maximum [psi]	Average [psi]
0,1	2,344e-006	1,9601	0,24238
0,2	4,2777e-006	3,9574	0,50461
0,35	9,3633e-006	6,9703	0,90124
0,575	1,6179e-005	11,507	1,487
0,7875	2,2592e-005	15,725	2,0397
1,	2,7611e-005	19,975	2,5818

Model (B4, C4) > Static Structural (B5) > Solution (B6) > Equivalent Stress 2447

Gráfico 29: Grafica de los Datos del Estrés Equivalente. Fuente: (Mullo P, 2020)

En el gráfico 29 se tiene los datos máximos y mínimos graficados teniendo así valores de 0.000002344 PSI y 19.975 PSI.

Análisis:

En este análisis estático del engrane N3 se evidencia que los valores obtenidos de deformación total, tensión elástica equivalentes y estrés equivalente son bajos, de lo que se deduce que el material utilizado y los cálculos realizados son correctos, por ende, que funcionalidad de la caja es segura.

Análisis Transitorio (Transient Structural)

Tabla 26. Resultados Generales de la Simulación de Análisis Transitorio.

Model (D4, E4, G4, H4) > Transient (D5) > Solution (D6) > Results				
Object Name	Total Deformation	Equivalent Stress		
State	Solv	red		
	Scope			
Scoping Method	Geometry	Selection		
Geometry	All Bo	odies		
	Definition			
Туре	Total Deformation	Equivalent (von-Mises) Stress		
Ву	Tim	1e		
Display Time	La	st		
Calculate Time History	Ye	s		
Identifier				
Suppressed	No	0		
	Results			
Minimum	0, in	1,6823e-003 psi		
Maximum	5,73e-005 in	636,67 psi		
Average	3,1168e-005 in	50,161 psi		
Minimum Occurs On	pppp_Inch - Spur gear 2.5DP 16T 20PA 3FWS16N3.0H2.0L1.125S1\Keyway	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FWS40N3.0H2.0L1.25S1\Keyway		
Maximum Occurs On	pppp_Inch - Spur gear 2.5DP 40T 20PA	3FWS40N3.0H2.0L1.25S1\Keyway		
	Minimum Value Over Tim	ie		
Minimum	0, in	0, psi		
Maximum	0, in	1,6823e-003 psi		
	Maximum Value Over Tim	10		
Minimum	0, in	0, psi		
Maximum	5,73e-005 in	636,67 psi		
	Information			
Time	61,	S		
Load Step	60)		
Substep	1			
Iteration Number	61	1		
	Integration Point Results	3		
Display Option		Averaged		
Average Across Bodies		No		

Deformación Total.

Imagen 15: Deformación Total. Fuente: (Mullo P, 2020)

En la imagen 15, se muestra la máxima deformación total del tren de engranes en el análisis transitorio del Programa de Ansys.

Tabla 27. Resultados de la Deformación Total.

Model (D4, E4, G4, H4) > Transient (D5) > Solution (D6) > Total Deformation

Time [s]	iviinimum [in]	waximum [in]	Average [in]
1, 2,		0,	0,
3,		9,7119e-007	5,2827e-007
4,		1,9424e-006	1,0565e-006
5,	1	2,9136e-006	1,5848e-006
6,	1	3,8848e-006	2,1131e-006
7,]	4,856e-006	2,6413e-006
8,]	5,8272e-006	3,1696e-006
9,		6,7984e-006	3,6979e-006
10,		7,7696e-006	4,2261e-006
11,		8,7407e-006	4,7544e-006
12,		9,7119e-006	5,2827e-006
13,		1,0683e-005	5,8109e-006
14,		1,1654e-005	6,3392e-006
15,		1,2626e-005	6,8675e-006
16,		1,3597e-005	7,3957e-006
17,		1,4568e-005	7,924e-006
18,		1,5539e-005	8,4523e-006
19,		1,651e-005	8,9805e-006
20,		1,7481e-005	9,5088e-006
21,		1,8453e-005	1,0037e-005
22,		1,9424e-005	1,0565e-005
23,		2,0395e-005	1,1094e-005
24,		2,1366e-005	1,1622e-005
25,		2,2337e-005	1,215e-005
26,		2,3309e-005	1,2678e-005
27,		2,428e-005	1,3207e-005
28,		2,5251e-005	1,3735e-005
29,		2,6222e-005	1,4263e-005
30,		2,7193e-005	1,4791e-005

31,	0,	2,8165e-005	1,532e-005
32,		2,9136e-005	1,5848e-005
33,		3,0107e-005	1,6376e-005
34,		3,1078e-005	1,6905e-005
35,		3,2049e-005	1,7433e-005
36,		3,3021e-005	1,7961e-005
37,		3,3992e-005	1,8489e-005
38,		3,4963e-005	1,9018e-005
39,		3,5934e-005	1,9546e-005
40,		3,6905e-005	2,0074e-005
41,		3,7877e-005	2,0602e-005
42,		3,8848e-005	2,1131e-005
43,		3,9819e-005	2,1659e-005
44,		4,079e-005	2,2187e-005
45,		4,1761e-005	2,2715e-005
46,		4,2733e-005	2,3244e-005
47,		4,3704e-005	2,3772e-005
48,		4,4675e-005	2,43e-005
49,		4,5646e-005	2,4829e-005
50,		4,6617e-005	2,5357e-005
51,		4,7588e-005	2,5885e-005
52,		4,856e-005	2,6413e-005
53,		4,9531e-005	2,6942e-005
54,		5,0502e-005	2,747e-005
55,		5,1473e-005	2,7998e-005
56,		5,2444e-005	2,8526e-005
57,		5,3416e-005	2,9055e-005
58,		5,4387e-005	2,9583e-005
59,		5,5358e-005	3,0111e-005
60,		5,6329e-005	3,0639e-005
61,		5,73e-005	3,1168e-005

Fuente: (Mullo P, 2020)

Gráfico 30: Grafica de los Datos de la Deformación Total. Fuente: (Mullo P, 2020)

En el grafico 30 se observa la distribución de los valores máximos y mínimos del análisis de la deformación total, evaluado en los 61 puntos programados teniendo valores de 0 y 0.0000573 in, estos valores son bajos por lo cual la caja podrá funcionar de la mejor manera.

Estrés Equivalente.

magen 16: Estrès Equivalente Fuente: (Mullo P, 2020)

En la imagen 16, se muestra el estrés equivalente del tren de engranes en el análisis transitorio del Programa de Ansys.

Time [s]	Minimum [psi]	Maximum [psi]	Average [psi]
1,	0	0	0
2,	υ,	υ,	υ,
3,	2,8514e-005	10,791	0,85019
4,	5,7029e-005	21,582	1,7004
5,	8,5543e-005	32,373	2,5506
6,	1,1406e-004	43,164	3,4008
7,	1,4257e-004	53,955	4,251
8,	1,7108e-004	64,746	5,1011
9,	1,996e-004	75,537	5,9513
10,	2,281e-004	86,328	6,8015
11,	2,5663e-004	97,119	7,6517
12,	2,8514e-004	107,91	8,5019
13,	3,1366e-004	118,7	9,3521
14,	3,4216e-004	129,49	10,202
15,	3,7069e-004	140,28	11,052
16,	3,992e-004	151,07	11,903
17,	4,2771e-004	161,87	12,753
18,	4,5623e-004	172,66	13,603
19,	4,8474e-004	183,45	14,453
20,	5,1326e-004	194,24	15,303
21,	5,4175e-004	205,03	16,154
22,	5,7028e-004	215,82	17,004
23,	5,9879e-004	226,61	17,854
24,	6,2729e-004	237,4	18,704
25,	6,5583e-004	248,19	19,554
26,	6,8433e-004	258,98	20,405
27,	7,1286e-004	269,78	21,255
28,	7,4137e-004	280,57	22,105
29,	7,6986e-004	291,36	22,955
30,	7,9837e-004	302,15	23,805
31,	8,2691e-004	312,94	24,656
32,	8,5543e-004	323,73	25,506
33,	8,8392e-004	334,52	26,356
34,	9,1246e-004	345,31	27,206
35,	9,4095e-004	356,1	28,056
36,	9,6948e-004	366,89	28,906

Tabla 28. Resultados del Estrés Equivalente.

Model (D4, E4, G4, H4) > Transient (D5) > Solution (D6) > Equivalent Stress

· · · ·			
37,	9,98e-004	377,69	29,757
38,	1,0265e-003	388,48	30,607
39,	1,055e-003	399,27	31,457
40,	1,0835e-003	410,06	32,307
41,	1,1121e-003	420,85	33,157
42,	1,1406e-003	431,64	34,008
43,	1,1691e-003	442,43	34,858
44,	1,1976e-003	453,22	35,708
45,	1,2261e-003	464,01	36,558
46,	1,2546e-003	474,81	37,408
47,	1,2831e-003	485,6	38,259
48,	1,3117e-003	496,39	39,109
49,	1,3402e-003	507,18	39,959
50,	1,3687e-003	517,97	40,809
51,	1,3972e-003	528,76	41,659
52,	1,4257e-003	539,55	42,51
53,	1,4542e-003	550,34	43,36
54,	1,4827e-003	561,13	44,21
55,	1,5113e-003	571,92	45,06
56,	1,5398e-003	582,72	45,91
57,	1,5683e-003	593,51	46,76
58,	1,5968e-003	604,3	47,611
59,	1,6253e-003	615,09	48,461
60,	1,6538e-003	625,88	49,311
61.	1.6823e-003	636,67	50,161

Fuente: (Mullo P, 2020)

Gráfico 31: Grafica de los Datos del Estrés Equivalente. Fuente: (Mullo P, 2020)

En el gráfico 31 se observa los valores graficados de los 61 valores mínimos y máximos teniendo así 0 PSI y 636.67 PSI, estos valores comparados con los demás son más altos pero la resistencia del AISI 1020 es de 68000 PSI.

Análisis:

Este análisis transitorio funciona para resolver una ecuación de movimiento siendo alentadores los valores obtenidos en la deformación total, y estrés equivalente ya que sus valores son bajos, lo que significa que al trasladar este análisis al armónico no va a existir ningún tipo de inconvenientes con su resolución.

En la solución generada por ANSYS se puede evidenciar que esta parte de la caja podrá generar 250 rpm.

Respuesta Armónica (Hermonic Response)

Tabla 29. Resultados Generales de la Simulación de Respuesta Armónica.

	model (D4, L4, O4, H4) > Harmonic Response 2 (H3	j > Solution (no) > Results
Object Name	Equivalent Stress	Total Deformation
State	Solv	/ed
	Scope	
Scoping Method	Geometry	Selection
Geometry	All Bo	dies
	Definition	
Туре	Equivalent (von-Mises) Stress	Total Deformation
By	Frequ	ency
Frequency	La	st
Amplitude	N	D
Sweeping Phase	0,	0
Identifier		
Suppressed	N	D
	Integration Point Results	3
Display Option	Averaged	
Average Across Bodies	No	
	Results	
Minimum	1,8782e-003 psi	0, in
Maximum	5,8909 psi	6,7529e-007 in
Average	0,48265 psi	3,5933e-007 in
Minimum Occurs On	pppp_Inch - Spur gear 2.5DP 16T 20PA	3FWS16N3.0H2.0L1.125S1\Keyway
Maximum Occurs On	pppp_Inch - Spur gear 2.5DP 16T 20PA 3FWS16N3.0H2.0L1.125S1\Keyway	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FWS40N3.0H2.0L1.25S1\Keyway
	Information	
Reported Frequency	300,	Hz

Model (D4, E4, G4, H4) > Harmonic Response 2 (H5) > Solution (H6) > Results

Deformación total.

Imagen 17: Deformación Total. Fuente: (Mullo P, 2020)

En la imagen 17, se muestra la deformación total del tren de engranes en la respuesta armónica del Programa de Ansys.

Tabla 30. Niveles de Frecuencia Utilizados.

Model (D4, E4, G4, H4) >	Harmonic Response 2 (H5) >	Solution (H6) >	Total Deformation
--------------------------	----------------------------	-----------------	-------------------

	Set	Frequency [Hz]	
	1,	30,	
	2,	60,	
	3,	90,	
	4,	120,	
	5,	150,	
	6,	180,	
	7,	210,	
	8,	240,	
	9,	270,	
	10,	300,	
ŀ	Tuen	te: (Mullo P, 2020	9)

Fuente: (Mullo P, 2020)

En el gráfico 32 se muestran los valores máximos y mínimos de la frecuencia trabajada en 10 mediciones.

Estrés Equivalente.

Imagen 18: Estrés Equivalente. Fuente: (Mullo P, 2020)

En la imagen 18, se muestra el estrés equivalente del tren de engranes en la respuesta armónica del Programa de Ansys.

Tabla 31. Niveles de Frecuencia Utilizados.

Model (D4, E4, G4, H4) >	Harmonic Response 2 (H5) >	Solution (H6) > Equivalent Stress

Set	Frequency [Hz]
1,	30,
2,	60,
3,	90,
4,	120,
5,	150,
6,	180,
7,	210,
8,	240,
9,	270,
10,	300,

Fuente: (Mullo P, 2020)

Gráfico 33: Gráfica de los valores obtenidos en el Estrés Equivalente Armónico. Fuente: (Mullo P, 2020)

En el gráfico 33 se muestran los valores de las 10 mediciones hasta llegar a 300 Hz.

En los gráficos 34 y 35 se evidencia el comportamiento del engrane vs la frecuencia, comenzando desde un valor de 0 Hz hasta llegar a 300 Hz, se puede decir que el comportamiento de los dos engranes son diferentes ya que el engrane 2 se mantiene casi constante hasta los 240 Hz para después incrementar drásticamente su valor y su amplitud. En cambio, en el engrane 3 su comportamiento es progresivo si la frecuencia aumenta igual su amplitud.

Análisis:

Para la simulación armónica se utilizó diferentes valores de frecuencia hasta llegar a 300 Hz, es ahí donde se evidencia que existe diferentes tipos de resistencia a la amplitud en los engranes, esto se da debido al tamaño del engrane, con esto se evidencia que su funcionamiento a 60 Hz no va a hacer ningún problema para que le cause daño a la caja multiplicadora, lo que prueba que la fabricación de esta caja brindara garantías en su funcionamiento.
Dinámica Explicita (Explicit Dynamics).

Tabla 32. Resultados Generales de la Simulación Dinámica.

	Model (F4) > Explicit Dynamics (F5) > Solution (F6) > Kesults							
Object Name	Total Deformation	Equivalent Stress	Equivalent Stress 3	Shear Stress				
State			So	ved				
			Scope					
Scoping Method	Geometry	Selection	Named	Selection	Geometry Selection			
Geometry	All B	odies			All Bodies			
Named Selection			Contact N2	Contact N3				
			Definition					
Туре	Total Deformation		Equivalent (von-Mises) Stress		Shear Stress			
By			Ti	ne				
Display Time			Lá	ist				
Calculate Time			v	20				
History								
Identifier								
Suppressed			Ν	lo				
Orientation		XY Plane						
Coordinate System		Global Coordinate System						
			Results					
Minimum	0, in	0, psi	261,34 psi	0, psi	-17913 psi			
Maximum	3,0947e-003 in	40307 psi	10611 psi	0, psi	17068 psi			
Average	7,2378e-004 in	10768 psi	3475,1 psi	0, psi	24,858 psi			
Minimum Occurs On	pppp_Inch - Spur gear 2 S16N3.0H2.0L1	. 5DP 16T 20PA 3FW . 125S1\Keyway	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FW S40N3.0H2.0L1.25S1\Keyway	pppp_Inch - Spur gear 2.5DP 16T 20PA 3FW S 16N3.0H2.0L1.125S 11Keyway	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FW S40N3.0H2.0L1.25S1\Keyway			
Maximum Occurs On	pppp_In	ich - Spur gear 2.5DP 40T 20PA	3FWS40N3.0H2.0L1.25S1\Keyway	pppp_Inch - Spur gear 2.5DP 16T 20PA 3FW S 16N3.0H2.0L1.125S1\Keyway	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FW S40N3.0H2.0L1.25S 1\Keyway			
			Minimum Value Over T	ime				
Minimum	0, in		0, psi		-23983 psi			
Maximum	0, in	0, psi	1410,5 psi	0,	psi			
			Maximum Value Over 1	ime				
Minimum	0, in			0, psi				
Maximum	3,0947e-003 in	47400 psi	43663 psi	0, psi	24059 psi			
			Information					
Time			1,4605	e-005 s				
Set				4				
Cy cle Number			1	00				
			Integration Point Resu	lts				
Display Option				Averaged				

Deformación total.

magen 19: Deformación Total Fuente: (Mullo P, 2020)

En la imagen 19, se muestra la deformación total del tren de engranes en el análisis dinámico del Programa de Ansys.

 Tabla 33. Resultados Obtenidos de la Deformación Total.

Model (F4) > Explicit Dynamics (F5) > Solution (F6) > Total Deformation							
	Time [s]	Minimum (in)	Maximum [in]	Average [in]			
	1,1755e-038						
	5,1316e-006		1,5624e-003	4,689e-004			
	1,0101e-005	0,	2,9781e-003	6,7548e-004			
	1,4605e-005		3,0947e-003	7,2378e-004			

Fuentes	(Mullo	P	2020)
г иете:	(Muuo	Γ,	2020)

Gráfico 36: Grafica de la Deformación Total. *Fuente:* (Mullo P, 2020) En el gráfico 36 se puede evidenciar la gráfica de la deformación total teniendo un valor mínimo de 0 y un valor máximo de 0.003094 in; al igual que los demás casos esta deformación es muy baja.

Estrés Equivalente.

Imagen 20: Estrés Equivalente. Fuente: (Mullo P, 2020)

En la imagen 20, se muestra la tensión elástica equivalente del tren de engranes en

el análisis dinámico del Programa de Ansys.

Tabla 34. Resultados Obtenidos de la Estrés Equivalente.

Model (F4) > Explicit Dynamics (F5) > Solution (F6) > Equivalent Stress

Time [s]	Minimum (psi)	Maximum (psi)	Average [psi]
1,1755e-038			
5,1316e-006		44062	9503,1
1,0101e-005	0,	47400	13325
1,4605e-005		40307	10768

Gráfico 37: Grafica del Estrés Equivalente. Fuente: (Mullo P, 2020)

En el gráfico 37 el estrés equivalente se grafica sus valores mínimos y máximos teniendo así 0 y 47400 PSI.

Máxima Tensión de Corte.

Imagen 21: Máxima Tensión de Corte. Fuente: (Mullo P, 2020)

En la imagen 21, se muestra la máxima tensión de corte del tren de engranes en el análisis dinámico del Programa de Ansys.

Tabla 35. Resultados Obtenidos de la Máxima Tensión de Corte.

Time [s]	Minimum (psi)	Maximum [psi]	Average [psi]				
1,1755e-038							
5,1316e-006	-17408	18997	170,06				
1,0101e-005	-23983	24059	168,25				
1,4605e-005	-17913	17068	24,858				

Model (F4) > Explicit Dynamics (F5) > Solution (F6) > Shear Stress

Fuente: (Mullo P, 2020)

Gráfico 38: Gráfica de la Máxima Tensión de Corte. *Fuente:* (Mullo P, 2020)

En la gráfica 38 se observa la maxima tension de corte teniendo valor maximos y minimos, 24059 PSI y -23983 PSI.

Análisis:

En la simulación dinámica se trabajó con 100 rpm que se tiene de la salida de la mini turbina, teniendo así resultados de deformación, tensión elástica equivalente y máxima tensión de corte bajos, debido a que las cargas iniciales ingresadas desde el análisis estático son bajas, y como resultado tenemos que la caja multiplicadora funcionando a los parámetros descritos anteriormente en esta investigación es factible y se garantiza su vida útil, al igual que su funcionalidad correcta.

Para los engranes N4 y N5 se realizó el mismo análisis, revisar anexo 35

Análisis en ANSYS de las Flechas.

Para el estudio de las flechas se utilizó un acero AISI 1020, los datos de este material están expuestos en las tablas 8 - 11.

Para el mallado de esta flecha se utilizó los siguientes parámetros dados ya por el programa.

Este mallado será ocupado en la flecha 1 y flecha 3 ya que son iguales geométricamente.

Imagen 22: Flecha con el Mallado Respectivo Fuente: (Mullo P, 2020)

En la imagen 22, se muestra el mallado con el cual se trabajará para los análisis de la flecha 1 del Programa de Ansys.

Model (A4, B4) > Me	sh
Object Name	Mesh
State	Solved
Display	
Display Style	Use Geometry Setting
Defaults	
Physics Preference	Mechanical
Element Order	Program Controlled
Element Siz e	Default
Sizing	
Use Adaptive Sizing	Yes
Resolution	Default (2)
Mesh Defeaturing	Yes
Defeature Siz e	Default
Transition	Fast
Span Angle Center	Coarse
Initial Size Seed	A ssembly
Bounding Box Diagonal	6,621 in
Average Surface Area	1,0475 in²
Minimum Edge Length	4,7372e-002 in
Quality	
Check Mesh Quality	Yes, Errors
Error Limits	Standard Mechanical
Target Quality	Default (0.050000)
Smoothing	Medium
Mesh Metric	None
Inflation	
Use Automatic Inflation	None
Inflation Option	Smooth Transition
Transition Ratio	0,272
Maximum Layers	5
Growth Rate	1,2
Inflation Algorithm	Pre
View Advanced Options	No
Advanced	
Number of CPUs for Parallel Part Meshing	Program Controlled
Straight Sided Elements	No
Number of Retries	Default (4)
Rigid Body Behavior	Dimensionally Reduced
Triangle Surface Mesher	Program Controlled
Topology Checking	Yes
Pinch Tolerance	Please Define
Generate Pinch on Refresh	No
Statistics	
Nodes	102190
Elements	51315

Tabla 36. Datos del Mallado Respectivo.

Análisis Estructural Estática Flecha 1 (Static Structural).

 Tabla 37. Resultados Generales de la Simulación de Análisis Estructural Estático.

Object Name	Moment F	Moment F 2	Moment T	Moment T 2			
State	Fully Defined						
		Scope					
Scoping Method		Geometry	Selection				
Geometry		1 Fa	ace				
	Definition						
Туре		Moment					
Define By	Components						
Coordinate System		Global Coordi	inate System				
X Component	0, Ibf·in	(ramped)	10,313 lbf-in (ramped)	-10,313 lbf·in (ramped)			
Y Component		0, Ibf·in ((ramped)				
Z Component	6,6555 lbf-in (ramped)	-6,6555 lbf-in (ramped)	0, Ibf·in	(ramped)			
Suppressed	No						
Behavior	Deformable						
	Advanced						
Pinball Region		A	.II				

Model (A4, B4) > Static Structural 2 (B5) > Loads

Deformación Total Flecha 1.

Imagen 23: Deformación Total Flecha 1. Fuente: (Mullo P, 2020)

En la imagen 23, se muestra la deformación total de la flecha 1 en el análisis estático

calculada con el momento Torsor y flector del Programa de Ansys.

 Tabla 38. Resultados Obtenidos de la Deformación Total.

Model (A4, B4) > Static Structural (A5) > Solution (A6) > Total Deformation

Time [s]	Minimum [in]	Maximum [in]	Average [in]
0,1	0,54901	5,7523	2,5739
0,2	1,098	11,505	5,1478
0,5	2,745	28,761	12,87
1,	5,4901	57,523	25,739

Fuente: (Mullo P, 2020)

Estrés Equivalente Flecha 1.

Imagen 24: Estrés Equivalente Flecha 1. Fuente: (Mullo P, 2020)

En la imagen 24, se muestra el estrés equivalente de la flecha 1 en el análisis estático

calculada con el momento Torsor y flector del Programa de Ansys.

Tabla 39. Resultados Obtenidos del Estrés Equivalente.

-			1 /			
	Time [s]	Minimum [psi]	Maximum [psi]	Average [psi]		
	0,1	1,012e-002	154,97	15,409		
	0,2	2,0241e-002	309,94	30,819		
	0,5	5,0609e-002	774,86	77,047		
	1,	0,10122	1549,7	154,09		

Model (A4, B4) > Static Structural (A5) > Solution (A6) > Equivalent Stress

Fuente: (Mullo P, 2020)

Análisis:

Para esta flecha 1 los resultados arrojados por el programa son positivos ya que las cargas ingresadas son bajas y el funcionamiento de este será el adecuado, por lo tanto, en su uso brindará seguridad de funcionalidad.

Datos del mallado de la flecha 2.

Imagen 25: Mallado de la Flecha 2. Fuente: (Mullo P, 2020)

En la imagen 25, se muestra el mallado con el cual se trabajará para los análisis de la flecha 2 del Programa de Ansys.

Model (C4) > Mesh					
Object Name	Mesh				
State	Solved				
Display					
Display Style	Use Geometry Setting				
Defaults					
Physics Preference	Mechanical				
Element Order	Program Controlled				
Element Siz e	Default				
Sizing					
Use Adaptive Sizing	Yes				
Resolution	Default (2)				
Mesh Defeaturing	Yes				
Defeature Siz e	Default				
Transition	Fast				
Span Angle Center	Coarse				
Initial Size Seed	A ssembly				
Bounding Box Diagonal	11,659 in				
Average Surface Area	1, 1703 in²				
Minimum Edge Length	4,5938e-002 in				
Quality					
Check Mesh Quality	Yes, Errors				
Error Limits	Standard Mechanical				
Target Quality	Default (0.050000)				
Smoothing	Medium				
Mesh Metric	None				
Inflation					
Use Automatic Inflation	None				
Inflation Option	Smooth Transition				
Transition Ratio	0,272				
Maximum Layers	5				
Growth Rate	1,2				
Inflation Algorithm	Pre				
View Advanced Options	No				
Advanced					
Number of CPUs for Parallel Part Meshing	Program Controlled				
Straight Sided Elements	No				
Number of Retries	Default (4)				
Rigid Body Behavior	Dimensionally Reduced				
Triangle Surface Mesher	Program Controlled				
Topology Checking	Yes				
Pinch Tolerance	Please Define				
Generate Pinch on Refresh	No				
Statistics					
Nodes	85873				
Elements	43268				
Elements	43268				

Tabla 40. Datos del Mallado Generado.

Análisis Estructural Estática Flecha 2 (Static Structural).

Tabla 41. Resultados Generales del análisis Estructural Estático de la flecha 2.

Model (C4) > Stati	Model (C4) > Static Structural (C5) > Solution (C6) > Results					
Object Name	Total Deformation	Equivalent Stress				
State		Solved				
	Scope					
Scoping Method	Geo	metry Selection				
Geometry		All Bodies				
	Definition					
Туре	Total Deformation	Equivalent (von-Mises) Stress				
By		Time				
Display Time	Display Time Last					
Calculate Time History		Yes				
Identifier						
Suppressed	No					
	Results					
Minimum	2,1085e-002 in	0,32008 psi				
Maximum	9,5498e-002 in	1533,2 psi				
Average	5,6968e-002 in	60,482 psi				
Minimum Occurs On	Flecha_	2_Solido-FreeParts				
Maximum Occurs On	Flecha_	2_Solido-FreeParts				
	Information					
Time		1, s				
Load Step		1				
Substep		1				
Iteration Number		1				
	ntegration Point R	Results				
Display Option		Averaged				
Average Across Bodies		No				

Deformación Total Flecha 2.

Imagen 26: Deformación Total Flecha 2. Fuente: (Mullo P, 2020)

En la imagen 26, se muestra la deformación total de la flecha 2 en el análisis estático

calculada con el momento Torsor y flector del Programa de Ansys.

Tabla 42. Resultados de la Deformación Total Flecha 2.

Model (C4) > Static Structural (C5) > Solution (C6) > Total Deformation Time [s] Minimum [in] Maximum [in] Average [in]

1, 2,1085e-002 9,5498e-002 5,6968e-002

Fuente: (Mullo P, 2020)

Estrés Equivalente Flecha 2.

magen 27: Estrés Equivalente Flecha 2 Fuente: (Mullo P, 2020)

En la imagen 27, se muestra el estrés equivalente de la flecha 2 en el análisis estático calculada con el momento Torsor y flector del Programa de Ansys

Tabla 43. Resultados del Estrés Equivalente.

Model (C	4) >	Static S	Structural	I (C5	5) >	Solutio	on (C6) >	> Equiv	alent	Stress

Time [s]	Minimum [psi]	Maximum [psi]	Average [psi]					
1, 0,32008		1533,2	60,482					

Fuente: (Mullo P, 2020).

Análisis:

En el análisis de la flecha 2 se observa que los valores de la deformación como del estrés equivalente son bajos es por esto que se concluye que el material utilizado es idóneo y su funcionamiento en conjunto con toda la caja multiplicadora será óptimo.

Para la flecha tres los resultados se encuentran en el anexo 36.

Resumen:

Análisis Estructural Estática (Static Structural).								
	N2	N3	N4	N5				
Deformación	0 – 1.125 X	0 - 1.1281	0 - 4.502 X	0 –				

Tabla 44. Resumen del Análisis Estructural Engranes.

	N2	N3	N4	N5				
Deformación	0 – 1.125 X	0 - 1.1281	$0 - 4.502 \ X$	0-4.5131 X				
Total	10 ⁻⁶ in	X 10 ⁻⁶ in	10 ⁻⁵ in	10 ⁻⁵ in				
Estrés	2.2013 X 10 ⁻	2.344 X 10 ⁻	8.8051 X 10 ⁻	9.3775 X 10 ⁻				
Equivalente	⁶ -26.314	⁶ -19.975	⁵ -105.9 PSI	⁵ -799.07				
	PSI	PSI		PSI				

Fuente: (Mullo P, 2020).

Tabla 45: Resumen del Análisis Transitorio por Trenes.

Análisis Transitorio (Transient Structural).				
Tren 1	Deformación Total	$0 - 5.73 \text{ X } 10^{-5} \text{ in}$		
	Estrés Equivalente	1.6823 X 10 ⁻³ – 636.67 PSI		
Tren 2	Deformación Total	0-2.291 X 10 ⁻⁵ in		
	Estrés Equivalente	6.729 X 10 ⁻⁴ – 254.66 PSI		
Fuente: (Mullo P, 2020).				

Tabla 46: Resumen del Análisis Armónico por Trenes.

Respuesta Armónica (Hermonic Response).				
Tren 1	Deformación Total	0-6.7529 X 10 ⁻³ in		
	Estrés Equivalente	1.8782 X 10 ⁻³ – 5.8909 PSI		
Tren 2	Deformación Total	$0 - 5.806 \text{ X } 10^{-5} \text{ in}$		
	Estrés Equivalente	9.151 X 10 ⁻³ – 637.81 PSI		
Fuente: (Mullo P, 2020).				

Tabla 47: Resumen Dinámica Explicita por Trenes.

Dinamica Explicita (Explicit Dynamics).					
Tren 1	Deformación Total	0 – 3.0947 X 10 ⁻⁵ in			
	Estrés Equivalente	0 - 40307 PSI			
Tren 2	Deformación Total	$0 - 1.0406 \text{ X } 10^{-2} \text{ in}$			
	Estrés Equivalente	0-21838 PSI			
Fuente: (Mullo P. 2020).					

. `

Tabla 48: Resumen del Análisis Estructural de las Flechas

Análisis Estructural Estática Flecha (Static Structural).

	Flecha 1	Flecha 2	Flecha 3
Deformación	0.549 – 57.523 in	2.108 X 10 ⁻² –	5.477 X 10 ⁻³ –
Total		9.5498 X 10 ⁻² in	8.3721 X 10 ⁻² in
Estrés	0.01012 - 1549.7	0.32 - 1533.2	0.1961 - 699.74
Equivalente	PSI	PSI	PSI
	Exerter (Mal)	(D 2020)	

Fuente: (*Mullo P, 2020*).

Al analizar los valores detallados en las tablas 44 – 48 se puede decir que la caja multiplicadora va a resistir el esfuerzo creado por este sistema de energía renovable,

teniendo así valores alentadores en sus deformaciones y estrés equivalente; de esta manera se garantiza el correcto funcionamiento de este sistema, así como también una larga vida útil.

Lubricación.

Para la lubricación se decidió por un aceite API GL2 debido a que las velocidades de la caja son bajas al igual que su torque, para lograr optimizar la lubricación se podría utilizar inhibidores contra la corrosión, antiespumante y aditivos para mejorar el punto mínimo de fluidez.

Nuestra caja multiplicadora tiene un volumen total de 29.05 L, así que es necesario un total de 17 L para que la caja este totalmente lubricada y no tenga ningún problema de funcionamiento.

Cronograma de actividades:

	6	Modo	Nombre de tarea	Duración 🖕	Comienzo 🖕	Fin	Predecesoras 🖕	lio 11 septiembre 1 noviembre 21 diciembre 11 febrero 1 abril	21 mayo
1		de	Inicio do tituloción	7 díac	lup 12/9/10	mar 20/9/10		4/8 25/8 15/9 6/10 27/10 17/11 8/12 29/12 19/1 9/2 1/3 22/3 12/4 3/5	24/5
2	~	B	Involucración en el proyecto de investigación	4 días	mié 21/8/19	lun 26/8/19	1		
3	\checkmark	3	Selección del tema	5 días	mar 27/8/19	lun 2/9/19	2		
4		3	Evaluación del tema	6 días	mar 3/9/19	mar 10/9/19	3		
5	\checkmark	3	Desarrollo de tema	6 días	mié 11/9/19	mié 18/9/19	4		
6	\checkmark	3	Desarrollo de objetivos	3 días	jue 19/9/19	lun 23/9/19	5		
7	\checkmark	₽	Presentación de objetivos	5 días	mar 24/9/19	lun 30/9/19	6		
8	\checkmark	3	Presentación del perfil en clases	12 días	mar 1/10/19	mar 15/10/19	7		
9		P,	Lectura de información de tesis complementarias al proyecto de investigación	16 días	mié 16/10/19	mié 6/11/19	8		
10	~	\$	Reunión de Investigación para definir tema	3 días	jue 7/11/19	jue 14/11/19	9	ě.	
11	\checkmark	3	Investigación de energias renovables	7 días	vie 15/11/19	lun 25/11/19	10		
12	~	\$	Investigación de micro hidrogeneración	10 días	mar 26/11/19	lun 9/12/19	11		
13	~	3	Investigación de resistencia de materiales	7 días	mar 10/12/19	mié 18/12/19	12		
14	\checkmark	3	Defensa del perfil de tesis	2 días	jue 19/12/19	vie 20/12/19	13	i i i i i i i i i i i i i i i i i i i	
15	~	3	Investigación de resistencia de materiales	14 días	lun 23/12/19	jue 9/1/20	14		
16	\checkmark	3	Investigacion engranes	11 días	vie 10/1/20	vie 24/1/20	15		
17	\checkmark	3	Sistemas de transmición	8 días	lun 27/1/20	mié 5/2/20	16		
18	~	3	Elección del Sistema de Transmición adecuado	4 días	jue 6/2/20	mar 11/2/20	17	Ě	
19	\checkmark	3	Calculos del sistema de transmición	22 días	mié 12/2/20	jue 12/3/20	18		
20	~	3	Diseño en solid works de la caja de transmisión	11 días	vie 13/3/20	vie 27/3/20	19		
21	✓	3	Desarrollo de planos de los elementos de la caja multiplicadora	3 días	lun 30/3/20	mié 1/4/20	20	, Š	
22	✓	₿	Animación de movimientos en SolidWorks	4 días	jue 2/4/20	mar 7/4/20	21	Ě	
23	✓	3	Simulación del sistema de engranes en Gears Simulation (demo)	8 días	mié 8/4/20	vie 17/4/20	22		
24	✓	₿	Simulación de esfuerzos en Ansys	25 días	lun 20/4/20	vie 22/5/20	23		₽1 :
25	~	\$	Investigacion de precios de los componentes de la caja	5 días	lun 25/5/20	vie 29/5/20	24		
26		3	Elaboración de presupuestos	1 día	lun 1/6/20	lun 1/6/20	25		ĥ
27		3	Envio del primer borrador	1 día	mar 2/6/20	mar 2/6/20	26		l (

Tabla 49. Cronograma de Actividades.

Fuente: (Mullo P, 2020)

Análisis de Costos.

 Tabla 50. Análisis de Costo de los Componentes.

	Cuju Multiplicatora							
Cantidad	Componente	Imagen	Material	Precio Unitario	Pre	cio Total		
1	Plancha de acero de 5mm		AISI 1020	\$ 35,00	\$	35,00		
2	Eje de acero		AISI 1020	\$ 42,00	\$	84,00		
4	Rodamiento AFBMA 12,2 - 1,0625 - 1,3125 - 0,1562 - 40, SI, NC, 40		Acero Inoxidable (X65Cr14)	\$ 18,00	\$	72,00		
2	Rodamiento AFBMA 12,2 - 0,625 - 0,8750 - 0,1562 - 26, SI, NC, 26	O	Acero Inoxidable (X65Cr14)	\$ 9,00	\$	18,00		
2	Anillo de retención B27,1 - NA2 -125a	0	Acero al Carbono	\$ 5,75	\$	11,50		
2	Anillo de retención B27,1 - NA1 -81	0	Acero al Carbono	\$ 4,00	\$	8,00		
2	Anillo de retención B27,1 - NA1 - 43	\bigcirc	Acero al Carbono	\$ 3,80	\$	7,60		
4	Anillo de retención B27,1 - NA2 -112	\bigcirc	Acero al Carbono	\$ 5,25	\$	21,00		
2	Engranaje 2,5 DP 40T 20PA 3FW- S40N3,0H2,0L1.25S1	000	AISI 1020	\$ 190,00	\$	380,00		
2	Engranaje 2,5 DP 16T 20PA 3FW- S16N3,0H2,0L1.125S1	Catherine	AISI 1020	\$ 110,00	\$	220,00		
1	Tapón SSCONESLT 0,75 - 16x00,75-N	e MultiAcco	AISI 316	\$ 2,00	\$	2,00		
2	Platina de 5 mm		AISI 1020	\$ 8,00	\$	16,00		
					\$	875,10		

Caja Multiplicadora

Fuente: (Mullo P, 2020)

 Tabla 51. Costo Total.

Descripción	Costo
Materiales	\$ 875,10
Total hora máquina	\$ 250,00
Mano de Obra	\$ 72,40
Total	\$ 1.197,50

CAPITULO IV

CONCLUSIONES Y RECOMENDACIONES

Conclusiones:

- Se caracterizó el recurso hidráulico del canal y se determinó que la sección tres del canal es la más eficiente, debido a que la velocidad es la más alta y su caudal es de 1.35 m³/s.
- Se realizó un análisis matemático de los engranes, flechas, rodamientos, anillos de retención y cuñas, teniendo como resultado valores que cumplen la condición de resistencia del diseño. Además, se modelo todos los componentes en el programa SolidWorks.
- Se realizó un análisis cinemático del multiplicador de revoluciones en Gears Simulation teniendo como resultado 625 rpm. Este resultado coincide con las mismas revoluciones que se calculó teóricamente a la salida del multiplicador, de esta manera se comprobó que los cálculos realizados son correctos.
- Se desarrollaron simulaciones dinámicas y estáticas de los componentes del multiplicador en el software ANSYS, teniendo como resultado que los componentes cumplen con las condiciones de resistencia.
- Finalmente, con la simulación del multiplicador de revoluciones se pudo comprobar que es posible optimizar el sistema de generación de electricidad adecuando la velocidad angular de entrada del generador por medio de una caja de multiplicación de revoluciones.

Recomendaciones:

- Analizar sitios del canal en donde se puedan implementar nuevos sistemas de generación.
- En el análisis matemático se recomienda utilizar las fórmulas de diseño en ingeniería mecánica, debido a que este posee ecuaciones AGMA que garanticen los resultados.
- En cuanto a las simulaciones de ANSYS se recomienda tener en cuenta el mallado ya que de este dependerá el tiempo de análisis y el resultado más apegado a la realidad.
- Para las futuras investigaciones de esta caja multiplicadora se recomienda prototipar y desarrollar ensayos.

ANEXOS

Condición	A	B	с
Engranajes abiertos	0.247	0.0167	-0.765(10-4)
Unidades comerciales, cerradas	0.127	0.0158	-0.930(10-4)
Unidades de precisión, cerradas	0.0675	0.0128	-0.926(10-4)
Unidades de precisión extrema, cerradas	0.00360	0.0102	-0.822(10-4)

*Vea la norma ANSI/AGMA 2101-D04, pp. 20-22, para formular en unidades SI.

Anexo 1: Constantes empíricas A, B y C de la ecuación 16, ancho de la cara F en pulgadas. Fuente: (Douglas y Monel, 2008).

	Material y módulo de elasticidad de la corona E ₂ Ibf/pulg ² (MPa)*								
Material del piñón	Módulo de elasticidad del piñón E, psi (MPa)*	Acero 30 × 10 ⁶ (2 × 10 ⁵)	Hierro maleable 25 × 10 ⁴ (1.7 × 10 ⁵)	Hierro nodular 24 × 10 ⁴ (1.7 × 10 ⁵)	Hierro fundido 22 × 10 ⁴ (1.5 × 10 ⁵)	Bronce al aluminio 17.5 × 10 ⁴ (1.2 × 10 ⁵)	Bronce al estaño 16 × 10 ⁴ (1.1 × 10 ⁵)		
Acero	30 × 10 ⁶ (2 × 10 ⁵)	2 300 (191)	2 180 (181)	2 160 179	2 100 (174)	1 950 (162)	1 900 (158)		
Hierro maleable	25 × 10 ⁶ (1.7 × 10 ⁵)	2 180 (181)	2 090 (174)	2 070 [172]	2 020 (168)	1 900 (158)	1 850 (154)		
Hierro nodular	24 × 10 ⁶ (1.7 × 10 ⁵)	2 160 (179)	2 070 (172)	2 050	2 000 (166)	1 880 (156)	1 830 (152)		
Hierro fundido	22 × 10 ⁶ (1.5 × 10 ⁵)	2 100	2 020 (168)	2 000	1 960 (163)	1 850 (154)	1 800 (149)		
Bronce al aluminia	17.5 × 10 ⁶ (1.2 × 10 ⁵)	1 950 (162)	1 900 (1.58)	1 880 (156)	1 850 (154)	1 750 (145)	1 700 (141)		
Bronce al estaño	16 x 10 ⁶ (1.1 x 10 ⁵)	1 900 (158)	1 850 (154)	1 830 (152)	1 800 (149)	1 700 (141)	1 650		

Rebolés de Polson = 0.30. "Cuando se obtenen valores del módulo de elasticidad más exactos mediante puedos de contacto con sobilio, se poden utilizor.

Anexo 3: Factor de ciclos de esfuerzos de resistencia a la picadura Zn. Fuente: (Douglas y Monel, 2008).

Anexo 5: Factor de ciclos de esfuerzo repetidamente aplicadas de resistencia a la flexión Yn. Fuente: (Douglas y Monel, 2008)

	Flexión	Torsión	Axial
Filete de hombro: agudo ($r/d = 0.02$)	2.7	2.2	3.0
Filete de hombro: bien redondeado ($r/d = 0.1$)	1.7	1.5	1.9
Cuñero fresado ($r/d = 0.02$)	2.2	3.0	-
Cuñero de patín o trapezoidal	1.Z	_	_
Ranura para anillo de retención	5.0	3.0	5.0

Los valores faltantes en la tabla no pueden obtenerse con facilidad.

Anexo 6: Estimaciones de los Factores de Concentración de Esfuerzo. Fuente: (Douglas y Monel, 2008)

1	2	3	4	5	6	7	8
	SAE y/o	Procesa	a la tensión,	la fluencia,	Elongación en	Reducción en	Dureza
UNS núm.	AISI núm.	miento	MPa (kpsi)	MPa (kpsi)	2 pulg, %	área, %	Brinell
G10060	1006	HR	300 (43)	170 (24)	30	55	86
		CD	330 (48)	280 (41)	20	45	95
G10100	1010	HR	320 (47)	180 (26)	28	50	95
		CD	370 (53)	300 (44)	20	40	105
G10150	1015	HR	340 (50)	190 (27.5)	28	50	101
		CD	390 (56)	320 (47)	18	40	111
G10180	1018	HR	400 (58)	220 (32)	25	50	116
		CD	440 (64)	370 (54)	15	40	126
G10200	1020	HR	380 (55)	210 (30)	25	50	111
		CD	470 (68)	390 (57)	15	40	131
G10300	1030	HR	470 (68)	260 (37.5)	20	42	137
		CD	520 (76)	440 (64)	12	35	149
G10350	1035	HR	500 (72)	270 (39.5)	18	40	143
		CD	550 (80)	460 (67)	12	35	163
G10400	1040	HR	520 (76)	290 (42)	18	40	149
		CD	590 (85)	490 (71)	12	35	170
G10450	1045	HR	570 (82)	310 (45)	16	40	163
		CD	630 (91)	530 (77)	12	35	179
G10500	1050	HR	620 (90)	340 (49.5)	15	35	179
		CD	690 (100)	580 (84)	10	30	197
G10600	1060	HR	680 (98)	370 (54)	12	30	201
G10800	1080	HR	770 (112)	420 (61.5)	10	25	229
G10950	1095	HR	830 (120)	460 (66)	10	25	248

Anexo 7: Resistencias Mínimas a la Tensión y a la Fluencia ASTM. Fuente: (Douglas y Monel, 2008)

Acabado	Fac	Exponente	
superficial	S _{ur} , kpsi	S _{ot} , MPa	Ь
Esmerilado	1.34	1.58	-0.085
Maquinado o laminado en frío	2.70	4.51	-0.265
Laminado en caliente	14.4	57.7	-0.718
Como sale de la forja	39.9	272.	-0.995

De C. J. Noll y C. Lipson, "Allowable Working Stresses", en *Society for Experimental Stress Analysis*, vol. 3. núm. 2, 1946, p. 29. Reproducida por O. J. Horger (ed.), *Metals Engineering Design ASME Handbook*, McGraw-Hill, Nueva York. Copyright © 1953 por The McGraw-Hill Companies, Inc. Reproducido con autorización.

Anexo 8: Parámetros en el Factor Superficial de Marín. Fuente: (Douglas y Monel, 2008)

Anexo 10: Sensibilidad a la Muesca Fuente: (Douglas y Monel, 2008)

Anexo 11: Eje Redondo con Filete en el Hombro en Torsión. Fuente: (Douglas y Monel, 2008)

Anexo 12: Sensibilidad a la Muesca de Materiales Sometidos a Torsión Inversa. Fuente: (Douglas y Monel, 2008)

ER SERIES RINGS

CENTURY STOCK NUMBER	SD Shuft Dia. (Inches)	FO Free Dia	Free Dia. Tel.	Thickness	Thickness Tol.	¥Ę-	¥ E	Section M.	U Log	KE	2 E =	Hale Dia. Tal.	TR Static Thrust ID Ring	TG State Thrust ID Groeve	Crocker Dia.	Groom. Child
ER0012	0.125	0.112	+ .002	0.010	×.001	0.018	0.011	+ .0015	0.046		0.026		105	35	0.117	
ER0015	0.156	1,680		0.015		0.025	0.016		0.054	* .002	0.025		240	20	0.175	+ .0015
ER0019	0.197	0.179		0.015		0.026	0.016	1000	0.056		0.026		255	85	0.185	
ER0021	0.219	0.196	004	0.015		0.028	0.017	±.002	0.056		0.026		280	105	0.205	APA E
E90023	0.236	0.215	1	0.015		0.030	0.019		0.056		0.026	+ 010	305	120	0.222	0015
ER0027	0.230	0.250		0.025		0.035	0.024	· · · · ·	0.081		0.041		650	195	0.255	
ER0028	0.281	0.256	<u> </u>	0.025		0.038	0.0255	-	0.080		0.041	1	660	195	0.261	
ER0031	0.312	0.281	+ .002	0.025		0.040	0.026		0.087		0.041		735	240	0.290	
EP0034	0.344	0.309		0.025		0.042	0.205	* .003	0.870		0.041		810	200	0.321	* 002
E90030 F80017	0.304	0.320		0.025		0.049	0.029		0.067		0.041		830	200	0.330	.002
E90039	0.394	0.354		0.025		0.052	0.310		0.067	a.003	0.041		925	330	0.309	0.000
ER0040	0.406	0.366	005	0.025		0.054	0.033		0.067		0.041		950	345	0.382	
ER0043	0.438	0.395	1.1	0.025		0.055	0.033		0.088	1.00	0.041		1030	400	0.412	
ER0040	0.409	0.428		0.025		0.060	0.030		0.005		0.041		1100	430	0.468	
ER0055	0.551	0.509		0.035		0.053	0.036		0.108		0.047		1810	620	0.519	# .002
ER0056	0.562	0.521		0.035		0.072	0.041		0.108		0.047		1850	640	0.530	.004
ER0059	0.594	0.550	+ .000	0.035	= .002	0.076	0.043	x.004	0.109		0.047	002	1960	720	0.559	
ER0062	0.625	0.579	_	0.035		0.080	0.045		0.110		0.047		2000	800	0.588	
ER0068	0.688	0.635		0.042		0.064	0.480		0.136		0.052		3400	1000	0.646	a.003
ER0075	0.750	0.693	010	0.042		0.092	0.051		0.136		0.052		3700	1200	0.704	.004
ER0078	0.781	0.722		0.042		0.094	0.052		0.136		0.052		3800	1300	0.733	
ER0081	0.812	0.751	<u> </u>	0.042		0.096	0.054	- 005	0.136		0.052		4000	1400	0.762	
ER0087 ER0083	0.875	0.810		0.042		0.104	0.057	1.000	0.137		0.052		4300	1600	0.821	
ER0098	0.964	0.910	1000	0.042		0.114	0.0645		0.167		0.078		4500	2000	0.926	± .003
ER0100	1.000	0.925	+ .010	0.042		0.116	0.065	_	0.167		0.078		4900	2100	0.940	
ER0102	1.023	0.945		0.042		0.118	0.066		0.168		0.078		5000	2200	0.961	
ER0106	1.062	0.982		0.050		0.122	0.069		0.181		0.078		6200	2400	0.998	
EPO112	1,123	1.098		0.050		0.132	0.072		0.182	1.000	0.078		6900	2900	1,118	
EP0125	1.250	1.156		0.050		0.140	0.076	_	0.183	±.004	0.078		7300	3200	1,176	± .004
ER0131	1.312	1.214	015	0.050		0.146	0.0765		0.183		0.078		7700	3700	1.232	
EH0137	1.375	1,272		0.050		0.152	0.082		0,184		0.078		8000	4000	1,291	
ER0150	1.500	1.333		0.050		0.160	0.000		0.214		0.120		8800	4900	1.406	
ER0156	1.562	1.445		0.062	_	0.172	0.093	±.006	0.235		0.125		11400	5100	1.468	
ER0162	1.625	1.503		0.062		0.180	0.097		0.235		0.125		11800	5500	1.529	
ER0168	1,688	1.560	+ .013	0.062		0,184	0.099		0.235		1.250	+ .015	12000	5800	1.589	- 005
EPU1/5 \$R0177	1.772	1.610		0.062		0.186	0.102		0.237		0.125	004	12900	6300	1.600	
ER0181	1.812	1.675		0.062		0.192	0.102		0.238	_	0.125		13200	6600	1,708	
EP0187	1.875	1.735	020	0.062		0.196	0.104		0.239		0.125		13600	7000	1.769	
ER0196	1.969	1.819	1.000	0.062		0.200	0.106		0.245		0.125		14300	7700	1.857	
ER0200	2.000	1.850		0.062	£ .003	0.204	0.108		0.239		0.125		14600	8000	1.555	
ER0212	2.125	1.964		0.078		0.212	0.113		0.266		0.125		19500	9100	2.003	
ER0215	2,156	1.993	+ .015	0.078		0.212	0.113		0.266		0.125		19800	9400	2.032	a .006
ER0225	2.250	2.081		0.078		0.220	0.116	+ 107	0.267	- 007	0.125		20600	10300	2.120	
680231	2,312	2,139	10000	0.078		0.222	0,118	2.000	0.267	1.000	0.125		21300	10900	2,178	* 006
ER0243	2.438	2.255	925	0.078		0.228	0.120		0.268		0.125		22400	11800	2,299	.006
ER0250	2.500	2,313		0.078		0.232	0.122	1 N	0.268		0.125		22900	12300	2.360	100000

Material: Carbon Spring Steel (SAE 1060-1090)

Anexo 13: Catalogo de Anillos de Retención. Fuente: (Spring, [sin fecha])

Anexo 14: Eje Redondo con Ranura de Fondo Plano en Flexión. Fuente: (Douglas y Monel, 2008)

Anexo 15: Modelación de la Sección Transversal 1. Fuente: (JHOSELIN BUÑAY, 2018)

Anexo 17: Modelación de la Sección Transversal 3. Fuente: (JHOSELIN BUÑAY, 2018)

Anexo 18: Modelación de la Sección Transversal 4. Fuente: (JHOSELIN BUÑAY, 2018)

Anexo 19: Modelación de la Sección Transversal 5. Fuente: (JHOSELIN BUÑAY, 2018)

Anexo 20: Modelación de la Sección Transversal 6. Fuente: (JHOSELIN BUÑAY, 2018)

Anexo 21: Esquematización de las Secciones Transversales del Canal de Riego. Fuente: (JHOSELIN BUÑAY, 2018)

Anexo 22: Esquematización de las Secciones Transversales del Canal de Riego. Fuente: (JHOSELIN BUÑAY, 2018)

Anexo 23: Esquematización de las Secciones Transversales del Canal de Riego. Fuente: (JHOSELIN BUÑAY, 2018)

Anexo 24: Diagrama de Distribución de Velocidades – Sección 1. Fuente: (JHOSELIN BUÑAY, 2018)

Anexo 25: Diagrama de Distribución de Velocidades – Sección 2. Fuente: (JHOSELIN BUÑAY, 2018)

Anexo 26: Diagrama de Distribución de Velocidades – Sección 3. Fuente: (JHOSELIN BUÑAY, 2018)

Anexo 27: Diagrama de Distribución de Velocidades – Sección 4. Fuente: (JHOSELIN BUÑAY, 2018)

Anexo 28: Diagrama de Distribución de Velocidades – Sección 5. Fuente: (JHOSELIN BUÑAY, 2018)

Anexo 29: Diagrama de Distribución de Velocidades – Sección 6. Fuente: (JHOSELIN BUÑAY, 2018)

124

6

76370.05 gr

U.T.I.

Den

146

я

A REAL PROPERTY OF A REAL PROPER	^
	в

I	DESCRIPCIÓN	CANTIDAD	
I	Engrane de 40 dientes comprado	1	H
Ī	Anillo de Retención Comprado	2	
Ī	Anillo de Retención Comprado	2	c
I	Rodamiento Comprado	4	
t	Elemento Diseñado	1	
	Rodamiento Comprado	2	
I	Anillo de Retención Comprado	2	
Ī	Elemento Diseñado	4	D
I	Engrane de 16 dientes comprado	1	
	Engrane de 40 dientes comprado	1	
t	Elemento Diseñado	1	
Ī	Anillo de Retención Comprado	4	
t	Elemento Diseñado	2	
T	Tapón Comprado	1	E
Ī	Elemento Diseñado	2	
	Engrane de 16 dientes comprado	1	

Varios	
Caja Multiplicadora	ticole: 1:10
ero de Idmina: OI DE 04	Registro:

Anexo 31: Plano de la Carcasa. Fuente: (Mullo P, 2020)

Anexo 32: Plano de la Chaveta. Fuente: (Mullo P, 2020)

Anexo 33: Plano de la Flecha 2. Fuente: (Mullo P, 2020)

Anexo 34: Plano de la Polea. Fuente: (Mullo P, 2020)

Anexo 35: Plano de la Flecha 1. Fuente: (Mullo P, 2020) Análisis Estructural Estática Engrane N4 (Static Structural).

TABLE 18 Model (A4) > Static Structural (A5) > Solution (A6) > Results					
Object Name	Total Deformation	Equivalent Elastic Strain	Equivalent Stress	Equivalent Stress 2	Equivalent Stress 3
State			Soh	red	
			Scope		
Scoping Method	Geometry	Selection		Named S	election
Geometry	All B	odies			
Named Selection				cara	cara2
			Definition		
Ту ре	Total Deformation	Equivalent Elastic Strain		Equivalent (von-Mises) Stress	3
By			Tin	10	
Display Time			La	st	
Calculate Time			Ye	S	
Identifier					
Suppressed			N	p	
			Results	-	
Minimum	0, in	3,1874e-011 in/in	8,3252e-004 psi	11,511 psi	0,10159 psi
Maximum	4,502e-005 in	4,4008e-005 in/in		1051,9 psi	543,56 psi
Average	2,6752e-005 in	3,5326e-006 in/in	98,499 psi	157,75 psi	56,653 psi
Minimum Occurs On	pppp_Inch - Spur gear 2.5DP 16T 20PA 3FW S16N3.0H2.0L1.125S1\Keyway	pppp_Inch - Spur gear 2.5DI S40N3.0H2.0L1.25	P 40T 20PA 3FW S1\Keyway	pppp_Inch - Spur gear 2.5DP 16T 20PA 3FW S16N3.0H2.0L1.125S1\Keyway	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FW S40N3.0H2.0L1.25S 1\Keyway
Maximum Occurs On	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FW S40N3.0H2.0L1.25S 1\Keyway	pppp_inch -	Spur gear 2.5DP 16T 20PA	3FWS16N3.0H2.0L1.125S1\Keyway	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FW S40N3.0H2.0L1.25S 1\Keyway
			Minimum Value Over Ti	me	
Minimum	0, in	3,0518e-012 in/in	8,8051e-005 psi	1,9938 psi	8,953e-003 psi
Maximum	0, in	3,1874e-011 in/in	8,3252e-004 psi	11,511 psi	0,10159 psi
		1	Maximum Value Over T	ime	
Minimum	4,5841e-006 in	4,4045e-006 in/in		105,35 psi	52,209 psi
Maximum	4,502e-005 in	4,4008e-005 in/in		1051,9 psi	543,56 psi
			Information		
Time			1,	S	
Load Step					
Substep			t	•	
iteration Number			Integration Doint Post	l lte	
Display Option			integration Point Resu	Averaned	
Average A cross				Avelaged	
Bodies		No			

 TABLE 19

 Model (A4) > Static Structural (A5) > Solution (A6) > Total Deformation

 Time [s] M inimum [in] Maximum [in] Average [in]

0,1	0,	4,5841e-006	2,7399e-006
0,2		9,0366e-006	5,3733e-006
0,35		1,5669e-005	9,2939e-006
0,575		2,5921e-005	1,5417e-005
0,7875		3,5728e-005	2,1286e-005
1,		4,502e-005	2,6752e-005

TABLE 20 Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Elastic Strain

Time [s]	Minimum (in/inj	Maximum [in/in]	Average [in/in]
0,1	3,0518e-012	4,4045e-006	3,6545e-007
0,2	6,1688e-012	8,6969e-006	7,0933e-007
0,35	1,2639e-011	1,5417e-005	1,2246e-006
0,575	1,7361e-011	2,5601e-005	2,0407e-006
0,7875	2,2516e-011	3,4781e-005	2,823e-006
1,	3,1874e-011	4,4008e-005	3,5326e-006

TABLE 21 Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Stress

Time [s]	Minimum [psi]	M ax imum [psi]	Average [psi]
0,1	8,8051e-005	105,35	10, 198
0,2	1,6114e-004	207,82	19,783
0,35	3,3312e-004	368,35	34, 139
0,575	4,5437e-004	611,87	56,898
0,7875	6,0005e-004	831,58	78,736
1,	8,3252e-004	1051,9	98,499

Análisis Estructural Estática Engrane N5 (Static Structural).

Model (B4, C4) > Static Structural (B5) > Solution (B6) > Results					
Object Name	Total Deformation	Equivalent Stress			
State	State Solved				
	Scope				
Scoping Method	Geometry	Selection			
Geometry	All Bo	odies			
	Definition				
Туре	Total Deformation	Equivalent (von-Mises) Stress			
Ву	Tin	ne			
Display Time	La	st			
Calculate Time History	Ye	s			
Identifier					
Suppressed	N	D			
	Results				
Minimum	0, in	1,1128e-003 psi			
Maximum	4,5131e-005 in	799,07 psi			
Average	2,7032e-005 in	103,29 psi			
Minimum Occurs On	pppp_Inch - Spur gear 2.5DP 16T 20PA 3FWS16N3.0H2.0L1.125S1\Keyway	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FWS40N3.0H2.0L1.25S1\Keyway			
Maximum Occurs On	pppp_Inch - Spur gear 2.5DP 40T 20PA	3FWS40N3.0H2.0L1.25S1\Keyway			
	Minimum Value Over Tim	10			
Minimum	0, in	9,3775e-005 psi			
Maximum	0, in	1,1128e-003 psi			
	Maximum Value Over Tin	ne			
Minimum	4,3871e-006 in	78,417 psi			
Maximum	4,5131e-005 in	799,07 psi			
	Information				
Time	1,	S			
Load Step	1				
Substep	6				
Iteration Number	9				
	Integration Point Result	S			
Display Option		Averaged			
Average Across Bodies		No			

TABLE 15 Model (B4, C4) > Static Structural (B5) > Solution (B6) > Result

 TABLE 16

 Model (B4, C4) > Static Structural (B5) > Solution (B6) > Total Deformation

 Time [s] Minimum [in] Maximum [in] Average [in]

0,1	0,	4,3871e-006	2,5999e-006
0,2		8,9416e-006	5,3368e-006
0,35		1,5783e-005	9,4501e-006
0,575		2,5961e-005	1,5554e-005
0,7875		3,5594e-005	2,1331e-005
1,		4,5131e-005	2,7032e-005

TABLE 17 Model (B4, C4) > Static Structural (B5) > Solution (B6) > Equivalent Stress

Time [s]	Minimum [psi]	Maximum [psi]	Average [psi]
0,1	9,3775e-005	78,417	9,6968
0,2	1,711e-004	158,32	20,188
0,35	3,7457e-004	278,85	36,056
0,575	6,5405e-004	460,34	59,49
0,7875	9,044e-004	629,05	81,604
1,	1,1128e-003	799,07	103,29

Análisis Transitorio (Transient Structural)

Model (D4, E4, G4, H4) > Transient (D5) > Solution (D6) > Results				
Object Name	Total Deformation	Equivalent Stress		
State	Solv	/ed		
	Scope			
Scoping Method	Geometry	Selection		
Geometry	All Bo	odies		
	Definition			
Туре	Total Deformation	Equivalent (von-Mises) Stress		
By	Tim	ne		
Display Time	La	st		
Calculate Time History	Ye	95		
Identifier				
Suppressed	No.	0		
	Results			
Minimum	0, in	6,7291e-004 psi		
Maximum	2,2919e-005 in	254,66 psi		
Average	1,2467e-005 in	20,064 psi		
Minimum Occurs On	pppp_Inch - Spur gear 2.5DP 16T 20PA 3FWS16N3.0H2.0L1.125S1\Keyway	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FWS40N3.0H2.0L1.25S1\Keyway		
Maximum Occurs On	pppp_Inch - Spur gear 2.5DP 40T 20PA	3FWS40N3.0H2.0L1.25S1\Keyway		
	Minimum Value Over Tim			
Minimum	0, in	0, psi		
Maximum	0, in	6,7291e-004 psi		
	Maximum Value Over Tin	ne		
Minimum	0, in	0, psi		
Maximum	2,2919e-005 in	254,66 psi		
	Information			
lime	61,	S		
Load Step	60	J		
Substep	1	1		
Iteration Number	bi Integration Daint Deputy	l		
Display Option		Averaged		
Average Across Bodios		No		
Average Across Doules		140		

TABLE 22		
Model (D4, E4, G4, H4) > Transient (D5) > Solution	(D6) >	Res

 TABLE 23

 Model (D4, E4, G4, H4) > Transient (D5) > Solution (D6) > Total Deformation

 Time [s] Minimum [in] Maximum [in] Average [in]

Time [a]	winning [in]	Maximum [in]	Average [iii]
1,		0,	0,
Z,		0.0010.007	0.440.007
3,		3,8846e-007	2,113e-007
4,		7,7692e-007	4,2259e-007
5,		1,1654e-006	6,3389e-007
6,		1,5538e-006	8,4519e-007
7,		1,9423e-006	1,0565e-006
8,		2,3308e-006	1,2678e-006
9,		2,7192e-006	1,4791e-006
10,		3,1077e-006	1,6904e-006
11,		3,4961e-006	1,9017e-006
12,		3,8846e-006	2,113e-006
13,		4,2731e-006	2,3243e-006
14,	1	4,6615e-006	2,5356e-006
15,	1	5,05e-006	2,7469e-006
16,		5,4384e-006	2,9582e-006
17,		5,8269e-006	3,1695e-006
18,		6,2154e-006	3,3808e-006
19,	1	6,6038e-006	3,5921e-006
20	1	6 99230 006	3 80330 006
20,		7 2007 000	3,00336-000
21,		7,30070-000	4,01400-000
22,		7,76920-006	4,2259e-006
23,		8,1577e-006	4,4372e-006
24,		8,5461e-006	4,6485e-006
25,		8,9346e-006	4,8598e-006
26,		9,323e-006	5,0711e-006
27,		9,7115e-006	5,2824e-006
28,		1,01e-005	5,4937e-006
29,		1,0488e-005	5,705e-006
30,		1,0877e-005	5,9163e-006
31,	0,	1,1265e-005	6,1276e-006
	1		1

32,	1,1654e-005	6,3389e-006
33,	1,2042e-005	6,5502e-006
34,	1,2431e-005	6,7615e-006
35,	1,2819e-005	6,9728e-006
36,	1,3208e-005	7,1841e-006
37,	1,3596e-005	7,3954e-006
38,	1,3985e-005	7,6067e-006
39,	1,4373e-005	7,818e-006
40,	1,4761e-005	8,0293e-006
41,	1,515e-005	8,2406e-006
42,	1,5538e-005	8,4519e-006
43,	1,5927e-005	8,6632e-006
44,	1,6315e-005	8,8745e-006
45,	1,6704e-005	9,0858e-006
46,	1,7092e-005	9,2971e-006
47,	1,7481e-005	9,5084e-006
48,	1,7869e-005	9,7197e-006
49,	1,8258e-005	9,931e-006
50,	1,8646e-005	1,0142e-005
51,	1,9035e-005	1,0354e-005
52,	1,9423e-005	1,0565e-005
53,	1,9811e-005	1,0776e-005
54,	2,02e-005	1,0987e-005
55,	2,0588e-005	1,1199e-005
56,	2,0977e-005	1,141e-005
57,	2,1365e-005	1,1621e-005
58,	2,1754e-005	1,1833e-005
59,	2,2142e-005	1,2044e-005
60,	2,2531e-005	1,2255e-005
61,	2,2919e-005	1,2467e-005

TABLE 24 Model (D4, E4, G4, H4) > Transient (D5) > Solution (D6) > Equivalent Stress

	Time [s]	Minimum [psi]	Maximum [psi]	Average [psi]
	1, 2,	0,	0,	0,
	3.	1,1405e-005	4,3162	0.34006
	4,	2,281e-005	8,6324	0,68012
	5,	3,4216e-005	12,949	1,0202
	6,	4,5621e-005	17,265	1,3602
	7,	5,7026e-005	21,581	1,7003
	8,	6,8431e-005	25,897	2,0404
	9,	7,9836e-005	30,214	2,3804
	10,	9,1241e-005	34,53	2,7205
	11,	1,0264e-004	38,846	3,0605
	12,	1,1405e-004	43,162	3,4006
	13,	1,2545e-004	47,478	3,7407
	14,	1,3686e-004	51,795	4,0807
	15,	1,4827e-004	56,111	4,4208
	16,	1,5967e-004	60,427	4,7609
	17,	1,7108e-004	64,743	5,1009
	18,	1,8248e-004	69,059	5,441
	19,	1,9388e-004	73,376	5,781
ĺ	20,	2,0529e-004	77,692	6,1211
	21,	2,167e-004	82,008	6,4612
	22,	2,281e-004	86,324	6,8012
	23,	2,395e-004	90,641	7,1413
	24,	2,5091e-004	94,957	7,4813
	25,	2,6232e-004	99,273	7,8214
	26,	2,7372e-004	103,59	8,1615
	27,	2,8513e-004	107,91	8,5015
	28,	2,9653e-004	112,22	8,8416
	29,	3,0794e-004	116,54	9,1816
ĺ	30,	3,1935e-004	120,85	9,5217

31,	3,3075e-004	125,17	9,8618
32,	3,4215e-004	129,49	10,202
33,	3,5355e-004	133,8	10,542
34,	3,6497e-004	138,12	10,882
35,	3,7637e-004	142,44	11,222
36,	3,8778e-004	146,75	11,562
37,	3,9918e-004	151,07	11,902
38,	4,1057e-004	155,38	12,242
39,	4,2199e-004	159,7	12,582
40,	4,334e-004	164,02	12,922
41,	4,448e-004	168,33	13,262
42,	4,5619e-004	172,65	13,602
43,	4,6761e-004	176,96	13,942
44,	4,7902e-004	181,28	14,283
45,	4,9041e-004	185,6	14,623
46,	5,0183e-004	189,91	14,963
47,	5,1321e-004	194,23	15,303
48,	5,2463e-004	198,55	15,643
49,	5,3604e-004	202,86	15,983
50,	5,4745e-004	207,18	16,323
51,	5,5885e-004	211,49	16,663
52,	5,7025e-004	215,81	17,003
53,	5,8166e-004	220,13	17,343
54,	5,9307e-004	224,44	17,683
55,	6,0447e-004	228,76	18,023
56,	6,1587e-004	233,08	18,363
57,	6,2729e-004	237,39	18,703
58,	6,3868e-004	241,71	19,043
59,	6,501e-004	246,02	19,383
60,	6,6149e-004	250,34	19,724
61,	6,7291e-004	254,66	20,064

Respuesta Armónica (Hermonic Response)

Model (D4, E4, G4, H4) > Harmonic Response 2 (H5) > Solution (H6) > Results					
Object Name	Total Deformation	Equivalent Stress			
State	ate Solved				
	Scope				
Scoping Method	Geometry	y Selection			
Geometry	All E	Bodies			
	Definition				
Туре	Total Deformation	Equivalent (von-Mises) Stress			
Ву	Freq	uency			
Frequency	L	ast			
Amplitude	1	No			
Sweeping Phase	0, °				
Identifier					
Suppressed	Suppressed No				
	Results				
Minimum	0, in	7,5141e-002 psi			
Maximum	2,7016e-005 in	235,67 psi			
Average	1,4375e-005 in	19,309 psi			
Minimum Occurs On	pppp_Inch - Spur gear 2.5DP 16T 20PA	A 3FWS16N3.0H2.0L1.125S1\Keyway			
Maximum Occurs On	pppp_Inch - Spur gear 2.5DP 40T 20PA 3FWS40N3.0H2.0L1.25S1\Keyway	pppp_Inch - Spur gear 2.5DP 16T 20PA 3FWS16N3.0H2.0L1.125S1\Keyway			
	Information				
Reported Frequency	300), Hz			
	Integration Point Resul	ts			
Display Option		Averaged			
Average Across Bodies		No			

TABLE 59 Model (D4, E4, G4, H4) > Harmonic Response 2 (H5) > Solution (H6) > Result

FIGURE 13 Model (D4, E4, G4, H4) > Harmonic Response 2 (H5) > Solution (H6) > Total Deformation

 TABLE 60

 Model (D4, E4, G4, H4) > Harmonic Response 2 (H5) > Solution (H6) > Total Deformation

Set	Frequency [Hz]	
1,	30,	
2,	60,	
3,	90,	
4,	120,	
5,	150,	
6,	180,	
7,	210,	
8,	240,	
9,	270,	
10,	300,	

FIGURE 14 Model (D4, E4, G4, H4) > Harmonic Response 2 (H5) > Solution (H6) > Equivalent Stress

 TABLE 61

 Model (D4, E4, G4, H4) > Harmonic Response 2 (H5) > Solution (H6) > Equivalent Stress

 Set
 Frequency [Hz]

000	r requeitey [riz]
1,	30,
2,	60,
3,	90,
4,	120,
5,	150,
6,	180,
7,	210,
8,	240,
9,	270,
10,	300,

Object Name	Frequency Response Frequency Response 2				
State	Solved				
Scope					
Scoping Method	Scoping Method Geometry Selection				
Geometry	16	ace			
Spatial Resolution	Use /	verage			
	Definition				
Туре	Type Directional Deformation				
Orientation	Z	Axis			
Coordinate System	Global Coord	dinate System			
Suppressed	Suppressed No				
Options					
Frequency Range	Use Parent				
Minimum Frequency	0,	Hz			
Maximum Frequency	300), Hz			
Display	В	ode			
Chart Viewing Style	La	ig Y			
	Results				
Maximum Amplitude	4,4534e-008 in	1,8184e-007 in			
Frequency	Jency 300, Hz				
Phase Angle	0), °			
Real	4,4534e-008 in 1,8184e-007 in				
Imaginary	0, in				

 TABLE 62

 Model (D4, E4, G4, H4) > Harmonic Response 2 (H5) > Solution (H6) > Result Charts

FIGURE 15 Model (D4, E4, G4, H4) > Harmonic Response 2 (H5) > Solution (H6) > Frequency Response

Dinámica Explicita (Explicit Dynamics).

Model (F4) > Explicit Dynamics (F5) > Solution (F6) > Results			
Object Name	Total Deformation	Equivalent Stress	
State		Solved	
	Scope		
Scoping Method	G	Geometry Selection	
Geometry		All Bodies	
	Definitio	n	
Туре	Total Deformation	Equivalent (von-Mises) Stress	
By		Time	
Display Time		Last	
Calculate Time History		Yes	
Identifier			
Suppressed		No	
	Results	3	
Minimum	2,1707e-004 in	0, psi	
Maximum	1,0406e-002 in	1,5703e+005 psi	
Average	4,626e-003 in	21838 psi	
Minimum Occurs On	pppp_Inch - Spur gear 2.5DP 4	10T 20PA 3FWS40N3.0H2.0L1.25S1\Keyway	
Maximum Occurs On	pppp_Inch - Spur gear 2.5DP 4	10T 20PA 3FWS40N3.0H2.0L1.25S1\Keyway	
	Minimum Value	Over Time	
Minimum	0, in	0, psi	
Maximum	3,8449e-004 in	0, psi	
	Maximum Value	Over Time	
Minimum	0, in	0, psi	
Maximum	1,0406e-002 in	1,6297e+005 psi	
	Informati	on	
Time		3,6523e-005 s	
Set		9	
Cycle Number		100	
	Integration Poir	nt Results	
Display Option		Averaged	
Average Across Bodies		No	

TABLE 18

 TABLE 19

 Model (F4) > Explicit Dynamics (F5) > Solution (F6) > Total Deformation

Time [s]	Minimum [in]	Maximum [in]	Average [in]
1,1755e-038			
5,2877e-006	0	3,9984e-003	8,9888e-004
1,0122e-005	υ,	6,7746e-003	1,3305e-003
1,5329e-005	9,2881e-007	7,1164e-003	1,7072e-003
2,0164e-005	3,8984e-005	4,6076e-003	2,0936e-003
2,537e-005	1,1556e-004	7,641e-003	2,8989e-003
3,0204e-005	1,804e-004	9,302e-003	3,7736e-003
3,5035e-005	3,8449e-004	1,0359e-002	4,4588e-003
3,6523e-005	2,1707e-004	1,0406e-002	4,626e-003

 TABLE 20

 Model (F4) > Explicit Dynamics (F5) > Solution (F6) > Equivalent Stress

lime [s]	Minimum [psi]	Maximum [psi]	Average [psi]
1,1755e-038			
5,2877e-006		95447	19436
1,0122e-005		1,1413e+005	26541
1,5329e-005		95615	24984
2,0164e-005	0,	72614	11566
2,537e-005		60026	15416
3,0204e-005		1,2075e+005	25853
3,5035e-005		1,6297e+005	24251
3,6523e-005		1,5703e+005	21838

Anexo 36: Análisis de los Engranes N4 y N5 Fuente: (Mullo P, 2020)

Análisis Estructural Estática Flecha 1 (Static Structural).

TABLE 26 Model (A4, B4) > Static Structural 2 (B5) > Solution (B6) > Results				
Object Name Total Deformation Equivalent Stress				
State	Solved			
	Scope			
Scoping Method	Geo	metry Selection		
Geometry		All Bodies		
	Definition			
Туре	Total Deformation	Equivalent (von-Mises) Stress		
Ву		Time		
Display Time		Last		
Calculate Time History		Yes		
Identifier	Identifier			
Suppressed	Suppressed No			
	Results			
Minimum	5,4775e-003 in	0,19619 psi		
Maximum	8,3721e-002 in	699,74 psi		
Average	3,8499e-002 in	71,27 psi		
Minimum Occurs On	Flecha_	1_Solido-FreeParts		
Maximum Occurs On	Flecha_	1_Solido-FreeParts		
	Information			
Time		1, s		
Load Step		1		
Substep	1			
Iteration Number		1		
I	ntegration Point R	lesults		
Display Option		Averaged		
Average Across Bodies		No		

TABLE 27					
Model (A4, B4)	> Static	Structural 2	(B5) > Solutio	n (B6) > Tota	I Deformation
	Time [s]	Minimum [in]	Maximum [in]	Average [in]	
	1,	5,4775e-003	8,3721e-002	3,8499e-002	

TABLE 28					
Model (A4, B4) > Static Structural 2 (B5) > Solution (B6) > Equivalent Stress					
	Time [s]	Minimum [psi]	Maximum [psi]	Average [psi]	

time [a]	winning [bai]	Maximum [psi]	Average [psi]
1,	0,19619	699,74	71,27

Anexo 37: Análisis de la Flecha 3. Fuente: (Mullo P, 2020)

Figura 14-5

Resistencia a la fatiga por contacto S_c a 10^7 ciclos y confiabilidad de 0.99 de engranes de acero completamente endurecido. Las ecuaciones en unidades SI son $S_c = 2.22 H_B + 200 MPa$, grado 1 y $S_c = 2.41 H_B +$ 237 MPa, grado 2. (Fuente: ANSI/AGMA 2001-D04 y 2101-D04.)

Anexo 38: Resistencia a la Fatiga por Contacto de Acero Completamente Endurecido. Fuente: (Douglas y Monel, 2008)

Anexo 39: Numero de Esfuerzo de Flexión Permisible para Acero Completamente Endurecido. Fuente: (Douglas y Monel, 2008)

Engranes	
Wi	Velocidad Angular de entrada
<i>w</i> ₀	Velocidad Angular de salida promedio calculada
е	Valor del tren
N ₂	Número de dientes del engrane N2
N ₃	Número de dientes del engrane N3
N ₄	Número de dientes del engrane N4
<i>N</i> ₅	Número de dientes del engrane N5
<i>w</i> ₅	Velocidad Angular de salida real
$w_3 = w_4$	Velocidad Angular de salida en el segmento
Н	Potencia de Entrada

T_2	Par Torsor 2
$\overline{T_3}$	Par Torsor 3
T_5	Par Torsor 5
P _{min}	Paso Diametral Mínimo
Y	Altura global de la caja de engranes
<i>d</i> ₂	Diámetro de paso del engrane N2
d_3	Diámetro de paso del engrane N3
	Diámetro de paso del engrane N4
d_5	Diámetro de paso del engrane N5
V ₂₃	Velocidad en Línea de Paso parte 2, 3
V_{45}	Velocidad en Línea de Paso parte 4, 5
W ^t ₂₃	Carga Transmitida parte 2, 3
$W_{45}^{\overline{t}}$	Carga Transmitida parte 4, 5
I	Factor Geométrico
Φ_{t}	Angulo de Presión Transversal
m _N	Relación de Distribución de Carga
m _G	Relación de Engranes
Q_{v}	Número del nivel de precisión de la transmisión
K_{v}	Factor Dinámico
F	Ancho de Cara
$K_{m1} = C_{mf1}$	Factor de distribución de Carga
C_{mc}	Factor de Corrección de Carga
C_{pf}	Factor de Proporción del piñón
C_{pm}	Modificación de Proporción del Piñón
C _{ma}	Factor de Alineación del Acoplamiento
Unidades	A; B; C
Comerciales	
Cerradas A, B,	
С.	
C_e	Factor de Corrección de la Alineación del
IV.	Acoplamiento
K ₀	Factor de Sobrecarga
K _s	Factor de la Condición Superficial
C _p	Coeficiente Elástico
σ _c	Esfuerzo de contacto a partir de relaciones AGMA (20574.8029 PSI)
L_2	Número de Ciclos para la Vida Especificada de 12000 horas (10^6)
o norm	Esfuerzo de contacto permisible, AGMA
S .	Resistencia a la fatiga superficial AGMA, esfuerzos
- c	de contacto permisibles
S _H	Factor de seguridad AGMA
Z_n	Factor de vida de ciclos de esfuerzo (valor obtenido
	de la gráfica)

C _H	Factores de la relación de durezas de resistencia a la
	picadura
K _T	Factores de temperatura
K _R	Factores de confiabilidad
HB	Dureza Brinell
n _c	Factor de Seguridad para el desgaste
J	Factor geométrico de resistencia a la flexión
K _B	Factor de espesor del aro
σ	Esfuerzo de flexión
Y_N	Factor de ciclos de esfuerzo de resistencia a la flexión
S _t	Resistencia a la flexión AGMA, esfuerzo de flexión
	permisible
σ_{perm}	Esfuerzo de flexión permisible
S _F	Factor de seguridad AGMA
n	Factor de seguridad para la flexión

Anexo 40: Nombre de los Símbolos Utilizados en el Cálculo de los Engranes. Fuente: (Douglas y Monel, 2008)

Flechas

W_{23}^r	Carga Transmitida Radialmente parte 2, 3
Т	Momento Torsor
М	Momento Flexiónate o flector
$k_t = k_f$	Flexión Filete de hombro: bien redondeado
$k_{ts} = k_{fs}$	Torsión Filete de hombro: bien redondeado
S_{ut}	Resistencia a la Tensión
S _y	Resistencia a la Fluencia
k _a	Factor de modificación de la condición superficial
a	Maquinado o laminado en frío
b	Maquinado o laminado en frío
k_b	Factor de modificación del tamaño
k _c	Factor de modificación de la carga
k _d	Factor de modificación de la temperatura
k _e	Factor de confiabilidad
k _f	Factor de modificación de efectos varios
S _e	Límite de resistencia a la fatiga en la ubicación crítica de
	una parte de máquina en la geometría y condición de
	uso.
d	Diámetro de la Flecha
<u>n</u>	Coeficiente de Seguridad
M _a	Momento Flector resultante en la flecha
<i>T</i>	Momento Torsor calculado
K _t	Factor de concentración del esfuerzo
q	Sensibilidad a la muesca
K _f	Factor de concentración del esfuerzo por fatiga
$artheta_a'$	Esfuerzo Alternante Equivalente
$\boldsymbol{\vartheta}_{\boldsymbol{m}}'$	Esfuerzo Medio
n_f	Factor de Seguridad contra la Fluencia

n_y	Factor de Seguridad contar Fallo por Fatiga
а	Grosor (anillo de retención)
t	Profundidad (anillo de retención)
L _c	Número de Ciclos para la Vida Especificada de 12000
	horas
F_{R_A}	Fuerza
F	Fuerza
t	Ancho cuña
L	Largo Mínimo

Anexo 41: Nombre de los Símbolos Utilizados en el Cálculo de las Flechas. Fuente: (Douglas y Monel, 2008)

Bibliografía.

CASTILLO GARCÍA, M., 2017. Un Generador Eléctrico Para.,

- Consumo Anual Per Cápita ARCONEL. [en línea], 2017. [Consulta: 7 diciembre 2019]. Disponible en: https://www.regulacionelectrica.gob.ec/recaudacionanual/.
- CONTRERAS, I.T., EDUARDO, C., LÓPEZ, M., ARRIAGA, I.H. y FLORES, G.V., 2018. Desarollo de una caja de engranajes para un aerogenerador de 30 kW de capacidad. , no. 442.
- COTRANSA, 2012. *Catalogo de engranes y cadenas* [en línea]. 2012. S.l.: s.n. Disponible en: https://www.cotransa.net/catalogo/ec96_cotransa_catalogo_engranes_y_cade nas.pdf.
- DOUGLAS, A. y MONEL, M., 2008. *Diseño en Ingeniería Mecánica*. Octava. México, D.F.: s.n. ISBN 978-0-07-312193-2.
- ESTEBAN GARCÍA, 2003. Diseño y simulación de una caja reductora de velocidad., no. 1, pp. 6-8. DOI 10.16309/j.cnki.issn.1007-1776.2003.03.004.
- JHOSELIN BUÑAY, 2018. ESTUDIO Y CARACTERIZACIÓN HIDRÁULICA DEL ÓVALO 10 AL 13 DEL CANAL DE RIEGO AMBATO - HUACHI -PELILEO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA [en línea]. S.1.: s.n. Disponible en: http://repo.uta.edu.ec/bitstream/handle/123456789/5301/Mg.DCEv.Ed.1859. pdf?sequence=3.
- LAUREANO MOYA RODRÍGUEZ, J. y CHAGOYÉN MÉNDEZ, C.A., 2012. Diseño de caja multiplicadora para turbinas eólicas. VII Conferencia Científica Internacional de Ingeniería Mecánica, no. November. DOI 10.13140/RG.2.1.3733.0407.
- LENIN IBAÑEZ, 2019. Diseño y construcción de una mini turbina hidrhulica tipo Michell - Banki para ser instalada en canales primarios abiertos y generar energía mecánica., pp. 86.
- ROBERT L. MOTT, P.E., 2004. Dieño de elementos de máquinas. , pp. 944.
- SCHALLENBERG, J.C., GONZALO, R., IZQUIERDO, P., HERNÁNDEZ RODRÍGUEZ, C., UNAMUNZAGA, P., RAMÓN, F., DÉNIZ, G., DÍAZ, M.,

DELIA, T., PÉREZ, C., MARTEL RODRÍGUEZ, G., PARDILLA, J., VICENTE, F. y ORTIN, S., 2008. *Energías renovables y eficiencia energética*. S.l.: s.n. ISBN 978-84-69093-86-3.

SPRING, C., [sin fecha]. CENTURY NUMBER., no. 213, pp. 1.

VÁZQUEZ, A.L., 2014. La energía renovable en México: perspectivas desde el Balance Nacional de Energía 2012. *Economía Informa* [en línea], vol. 385, pp. 90-99. ISSN 01850849. DOI 10.1016/s0185-0849(14)70423-2. Disponible en: http://dx.doi.org/10.1016/S0185-0849(14)70423-2.

Ambato, 01 de febrero del 2021

Certificado

Por el presente certifico que: el señor Mullo Coque Pablo Sebastián, con cedula de identificación No. 050377283-3, estudiante de la carrera de ingeniería Industrial, realizó su trabajo de titulación denominado "OPTIMIZACIÓN DEL PROCESO DE GENERACIÓN DE ENERGÍA RENOVABLE POR MEDIO DE UNA CAJA MULTIPLICADORA PARA UNA PICO HIDROELÉCTRICA EN EL CANAL DE RIEGO AMBATO – HUACHI – PELILEO". Dicho trabajo ha sido culminado y la entrega de este servirá como referente para la aplicación en la optimización del sistema de energía renovable Ambato – Huachi – Pelileo, así mismo debo destacar que ha demostrado responsabilidad, honestidad y dedicación en las labores a el encomendadas para la finalización de su trabajo de titulación.

Es todo cuanto puedo certificar en honor a la verdad, autorizando al interesado hacer uso de este documento como creyera conveniente.

Ing. Patricio Sánchez. Coordinador de la Carrera de ingeniería Industrial. Universidad Tecnológica Indoamérica.

Ing. Ignacio Ayala Docente Investigador Universidad Tecnológica Indoamérica.

AMBATO Dirección: Bolívar 20-35 y Guayaquil. Telfs.: (593)3 2421452 / 2421713 ext. 127 Dirección: Av. Manuelita Sáenz y Agromonte. Telfs.: (593)3 2588332 / 2585389

QUITO Dirección: Machala y Sabanilla (Sector Cotocollao) Telfs.: (593)2 3826970 / 3826971 / 3826972 / 2826973

Escaneado con CamScanner